首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This study investigated the influence of water content in combination with selected minor components including oleic acid, stigmasterol, α‐tocopherol, and Trolox on their association colloid formation as well as their impact on lipid oxidation in bulk corn oil. First, surface activity of each minor component was evaluated by determining the ability of these components to lower the interfacial tension between bulk oil and water. All components but α‐tocopherol were able to decrease interfacial tension of stripped oil. Second, the critical micelle concentration (CMC) of each minor component was determined in bulk oil with no water added and in the presence of 1000 ppm of water. In the bulk oil without extraneous water, we could not determine the CMC of minor components in the range of concentrations studied. However, in the presence of 1000 ppm of water, only stigmasterol could form association colloids at the CMC of 20 mmol/kg oil. Last, the effect of water content (400 and 1000 ppm) and minor components on lipid oxidation in bulk oil was studied by following the lipid hydroperoxides and hexanal formation during storage at 55 °C. Different water content did not significantly impact the lag time of lipid oxidation compared with the control. Interestingly, water caused prooxidant by decreasing the lag time of lipid hydroperoxides and hexanal formation in bulk oil containing oleic acid, stigmasterol, and Trolox compared with the control of each system. On the other hand, there was not significant impact of water on the antioxidant activity of α‐tocopherol, a lipid soluble antioxidant in bulk oil. This study highlights the impact of water content on the surface activity of minor components as well as on the oxidative stability in bulk oil.  相似文献   

2.
Association colloids such as phospholipid reverse micelles could increase the rate of lipid oxidation in bulk oils. In addition to phospholipids, other surface active minor components in commercial oils such as free fatty acids may impact lipid oxidation rates and the physical properties of reverse micelles. In this study, the effects of free fatty acids on changes in the critical micelle concentration (CMC) of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) in stripped corn oil (SCO) were determined by using the 7,7,8,8-tetracyanoquinodimethane solubilization technique. Different free fatty acids including myristoleic, oleic, elaidic, linoleic and eicosenoic were added at 0.5 % by wt along with the DOPC into the bulk oils. There was no significant effect of free fatty acids with different chain length, configuration and number of double bonds on the CMC value for DOPC in bulk oil. However, increasing concentrations of oleic acid (0.5 to 5 % by wt) caused the CMC value for DOPC in bulk oils to increase from 400 to 1,000 μmol/kg oil. Physical properties of DOPC reverse micelles in the presence of free fatty acids in bulk oils were also investigated by the small angle X-ray scattering technique. Results showed that free fatty acids could impact on the reverse micelle structure of DOPC in bulk oils. Moreover, free fatty acid decreased pH inside reverse micelle as confirmed by the NMR studies. The oxidation studies done by monitoring the lipid hydroperoxide and hexanal formation revealed that free fatty acids exhibited pro-oxidative activity in the presence and absence of DOPC. Different types of free fatty acids had similar pro-oxidative activity in bulk oil.  相似文献   

3.
Phospholipids are important minor components in edible oil that play a role in lipid oxidation. Surface active phospholipids have an intermediate hydrophilic–lipophilic balance value, which allows them to form association colloids such as reverse micelles in bulk oil. These association colloids can influence lipid oxidation since they create lipid–water interfaces where prooxidants and antioxidants can interact with triacylglycerols. In this study, we examined the formation of reverse micelles in a stripped oil system by dioleoyl phosphoethanolamine (DOPE) and the effect of these physical structures on lipid oxidation kinetics. The critical micelle concentration (CMC) of DOPE was approximately 200 µmol/kg oil at 45 °C. Oxidation kinetics studies showed that DOPE was prooxidative when it was above its CMC (400 and 1,000 µM), reducing the lag phase from 14 days (control) to 8 days. The addition of combinations of DOPE and dioleoyl phosphocholine (DOPC) resulted in formation of mixed micelles with a CMC of 80 µmol/kg oil at 45 °C. These mixed micelles were also prooxidative when concentrations (100 and 500 µM) were above the CMC, decreasing the lag phase from 14 to 8 days. These findings provide a better understanding of the role of phospholipids in lipid oxidation of edible oil and could contribute to better antioxidant solutions.  相似文献   

4.
In our study, we characterized the antioxidant activity and oxidative stability of cold-pressed macadamia, avocado, sesame, safflower, pumpkin, rose hip, Linola, flaxseed, walnut, hempseed, poppy, and milk thistle oils. The radical scavenging activity of the non-fractionated fresh oil, as well as the lipophilic and hydrophilic fractions of the oil was determined using a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The fatty acid composition of the fresh and stored oils was analyzed by gas chromatography. The acid value, peroxide value, p-anisidine value and conjugated diene and triene contents in the fresh oils, as well as in those stored throughout the whole period of their shelf life, were measured by CEN ISO methods. The antioxidant activity of the oils expressed as Trolox equivalent antioxidant capacity (TEAC), ranged from 0.17 to 2.32 mM. The lipophilic fractions of the oils were characterized by much higher antioxidant activity than the hydrophilic ones. There were no significant changes in fatty acid composition and only slight changes in the oxidative stability parameters of the oils during their shelf life. Through the assessment of the relationship between antiradical activity and the oxidative stability of oils, it is proposed that a DPPH assay predicts the formation of oxidation products in cold-pressed oils—however, the correlations differ in fractionated and nonfractionated oils.  相似文献   

5.
4-Vinylsyringol was produced by decarboxylation from sinapic acid. To evaluate the antioxidant activity of 4-vinylsyringol, 500 ppm of 4-vinylsyringol, sinapic acid, or α-tocopherol was added to soybean oil and the oxidation processes were monitored by the peroxide value (PV), the thiobarbituric acid reactive substances value (TBARS) assay, and 1H-NMR spectroscopy. The results obtained by PV and TBARS indicated that soybean oil containing 4-vinylsyringol (SBO-VS) showed the highest oxidative stability. 1H-NMR analysis also showed concurring results. After 19 days of oxidation, the degradation rates of linoleic acid (4.2 %) and linolenic acid (4.4 %) in SBO-VS were significantly lower than those in other oils. Secondary oxidation products (i.e. aldehydes) were undetectable in SBO-VS by 1H NMR, whereas concentrations of such compounds in soybean oils containing α-tocopherol or sinapic acid were 38.0 ± 0.4 and 2.75 ± 0.2 mM oil, respectively. In addition, synergistic antioxidant effect between any two antioxidants was not observed.  相似文献   

6.
The objective of this research was to determine the oxidative stability of fish oil blended with crude plant oils rich in naturally occurring antioxidants, camelina oil and oat oil, respectively, in bulk and after supplementation of 1 wt% of oil blends to skimmed milk emulsions. Ability of crude oat oil and camelina oil to protect fish oil in bulk and as fish oil-enriched skimmed milk emulsions was evaluated. Results of oxidative stability of bulk oils and blends assessed by the Schaal oven weight gain test and by the rancimat method showed significant increase in oxidative stability when oat oil was added to fish oil in only 5 and 10 %, whereas no protective effect of camelina oil was observed when evaluated by these methods. Moreover, fish oil blended with oat oil conferred the lowest PV and lower amounts of volatile compounds during the storage period of 14 days at 4 °C. Surprisingly, skimmed milk supplemented with fish-oat oil blend gave the highest scores for off-flavors in the sensory evaluation, demonstrating that several methods, including sensory analysis, should be combined to illustrate the complete picture of lipid oxidation in emulsions.  相似文献   

7.
Cultivar characterization of tea seed oils based on their active components and antioxidant capacity was carried out, providing fundamental data for authentication. The seeds were collected from 28 cultivars grown under the same conditions in the region of Anxi county of Fujian province and their oils were analyzed. The results showed that total phenols content (TPC), total flavonoids content, α-tocopherol contents, γ-tocopherol content and δ-tocopherol content were 16.7–529.3 mg GAE/kg of oil, 4.4–208.7 mg rutin/kg of oil, 7.7–347.1 mg/kg of oil, 1.8–106.7 mg/kg of oil, 0.003–35.769 mg/kg of oil, respectively. The antioxidant capacity measured by DPPH radical scavenging activity (DPPH), oxygen radical absorbance capacity (ORAC), absorbance of protein carbonyl (APC) and the absorbance of protein hydroperoxides (APH) were 91.0–2,164.5 μmol/100 g of oil, 251.0–1,209.5 μmol/100 g of oil, 0.014–0.135, 0.034–0.458, respectively. The correlation analysis revealed that the presence of phenolic compounds was significantly correlated with the antioxidant capacity of tea seed oil. Principal Component Analysis revealed the first three components accounted for 81.31 % of the total variance within the data and the main contributor parameters were DPPH, ORAC, APC, APH and TPC. Hierarchical cluster analysis classified the cultivars into three groups, which were in line with the genetic relationship among the cultivars. Our results supplied basic data for the antioxidant mechanism research of tea seed oil and provided necessary information to develop a breeding program directed to tea seed cultivar selections with the high nutraceutical value of tea seed oil.  相似文献   

8.
The factors influencing the oxidative stability of different commercial olive oils were evaluated. Comparisons were made of (i) the oxidative stability of commercial olive oils with that of a refined, bleached, and deodorized (RBD) olive oil, and (ii) the antioxidant activity of a mixture of phenolic compounds extracted from virgin olive oil with that of pure compounds andα-tocopherol added to RBD olive oil. The progress of oxidation at 60°C was followed by measuring both the formation (peroxide value, PV) and the decomposition (hexanal and volatiles) of hydroperoxides. The trends in antioxidant activity were different according to whether PV or hexanal were measured. Although the virgin olive oils contained higher levels of phenolic compounds than did the refined and RBD oils, their oxidative stability was significantly decreased by their high initial PV. Phenolic compounds extracted from virgin olive oils increased the oxidative stability of RBD olive oil. On the basis of PV, the phenol extract had the best antioxidant activity at 50 ppm, as gallic acid equivalents, but on the basis of hexanal formation, better antioxidant activity was observed at 100 and 200 ppm.α-Tocopherol behaved as a prooxidant at high concentrations (>250 ppm) on the basis of PV, but was more effective than the other antioxidants in inhibiting hexanal formation in RBD olive oil.o-Diphenols (caffeic acid) and, to a lesser extent, substitutedo-diphenols (ferulic and vanillic acids), showed better antioxidant activity than monophenols (p- ando-coumaric), based on both PV and hexanal formation. This study emphasizes the need to measure at least two oxidation parameters to better evaluate antioxidants and the oxidative stability of olive oils. The antioxidant effectiveness of phenolic compounds in virgin olive oils can be significantly diminished in oils if their initial PV are too high.  相似文献   

9.
Effects of moisture and amphiphilic compounds, including oleic acid, lecithin, and monoacylglycerols (MAGs), on the oxidative stability are evaluated in microwave-treated corn oil. Moreover, the physical properties including critical micelle concentration (CMC) and moisture content are determined in oils treated by microwave irradiation. The CMC of lecithin and moisture content of oils decreases remarkably, whereas the temperature of the oil increases rapidly with microwave irradiation. The addition of lecithin results in increased moisture content significantly in the edible oils, whereas oleic acid and MAGs do not exhibit these effects. Primary oxidation products in all the oil samples increase, despite the type of amphiphilic compounds used. Corn oil containing oleic acid and samples with lecithin exhibits lower and higher p-anisidine values (p-AV), respectively. Remarkably high moisture content in corn oils containing lecithin may contribute to the formation of volatile compounds and high p-AV. Collectively, moisture and amphiphilic compounds affect the degree of lipid oxidation in microwave-irradiated bulk oils. Practical application: A microwave oven is an irreplaceable home appliance and is widely used in households nowadays. Effects of amphiphilic compounds and moisture on the oxidative stability are evaluated and it is found that the amphiphilic compounds in lipids affect heat transfer and oxidative stability of oils. The results of this study can provide fundamental insights into lipid oxidation in edible oils, and can provide a direction to the food industry with respect to the development of more efficient and safe methods for the preparation of microwavable foods.  相似文献   

10.
Oxidative stability of flax and hemp oils   总被引:1,自引:0,他引:1  
Oxidative stability of flax and hemp oils, and of flax and hemp oils stripped of their minor components, was evaluated in the dark at 60°C and under fluorescent light at 27°C. Several analytical methods were used to assess the oxidative stability of oils. Oil extracts were also investigated for their scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and for their total phenolic contents. The results indicate that bioactive constituents of these edible oils play a major role in their oxidative stability. However, the FA composition of the oils and their total content of tocopherols as well as the type of pigments present contribute to their stability. Nonstripped flax and hemp oils were more stable than their corresponding stripped counterparts. Furthermore, nonstripped hemp oil had a higher oxidative stability than nonstripped flax oil as evidenced by scavenging of DPPH radical and consideration of total phenolic contents.  相似文献   

11.
The study was designed to characterise two extracts of Western Australian sandalwood (Santalum spicatum) seed oils for their physicochemical and lipid characteristics. Sandalwood plantation’s surplus seeds could be used for their oil content, to improve the commercial viability of this industry. The seed oils were obtained by solvent extraction and supercritical carbon dioxide extraction respectively. Important physicochemical parameters were compared with other oils commonly used in pharmaceutical and cosmetic products. Acid values were found to be higher (6.0–7.5 mg KOH/1 g oil) while peroxide values (6.7–9.0 mequiv/Kg) were lower than reported for other oils. Tocopherols were found to be lower than those usually reported for nut oils (α-tocopherol 1–3 mg/100 g; δ-tocopherol 2.2–5.7 mg/100 g), squalenes and phytosterols were found in considerable quantities. The fatty acid content consisted largely of ximenynic acid (35 %) and oleic acid (52 %). No oxidative derivatives of fatty acids were observed. Although there were statistically significant differences in some properties, the magnitude of these were insufficient to conclude there were any notable differences in the two oil extracts.  相似文献   

12.
Food habits worldwide have increased the demand for oxidative-resistant oils that can be used for deep-frying. Oxidative stability in oils can be improved by changing the fatty acid composition of the oil or by adding natural antioxidants to the oil. In this study, the effect of essential oils of seven plants; cinnamon, rosemary, sage, turmeric, clove, thyme and oregano enriched with carvacrol on the oxidative stability of corn oil at frying temperatures were studied. Experiments were conducted by using a PetroOxy device, a rapid small scale oxidation stability test. A central composite design was used to evaluate the effects of concentration of essential oil (X1: 1,500–5,000 ppm) and temperature (X2: 150–180 °C), on the induction time of corn oil. In order to compare the results with the synthetic antioxidant, butylated hydroxy toluene (BHT), another design was made with a concentration range (60–350 ppm) containing the legal upper limit of BHT, 200 ppm. Induction periods obtained from the accelerated oxidation test revealed that increasing temperature decreased the induction time of all the samples. However, the essential oils except for oregano oil had no significant antioxidative effect on corn oil, probably due to a lower content of their active components. The antioxidative effect of oregano oil was also found to be higher compared to BHT. At very high temperatures (e.g., 180 °C), the concentration of antioxidants had no effect on the induction periods.  相似文献   

13.
Canola and soybean oils both regular and with modified fatty acid compositions by genetic modifications and hydrogenation were compared for frying performance. The frying was conducted at 185 ± 5 °C for up to 12 days where French fries, battered chicken and fish sticks were fried in succession. Modified canola oils, with reduced levels of linolenic acid, accumulated significantly lower amounts of polar components compared to the other tested oils. Canola oils generally displayed lower amounts of oligomers in their polar fraction. Higher rates of free fatty acids formation were observed for the hydrogenated oils compared to the other oils, with canola frying shortening showing the highest amount at the end of the frying period. The half-life of tocopherols for both regular and modified soybean oils was 1–2 days compared to 6 days observed for high-oleic low-linolenic canola oil. The highest anisidine values were observed for soybean oil with the maximum reached on the 10th day of frying. Canola and soybean frying shortenings exhibited a faster rate of color formation at any of the frying times. The high-oleic low-linolenic canola oil exhibited the greatest frying stability as assessed by polar components, oligomers and non-volatile carbonyl components formation. Moreover, food fried in the high-oleic low-linolenic canola oil obtained the best scores in the sensory acceptance assessment.  相似文献   

14.
A method utilizing thin-layer chromatography with a flame ionization detector (TLC-FID) was developed for assessing the stability of breeder’s oil seed samples based on the formation of polar compounds. The results showed a linear relationship between peroxide value (PV) and the content of polar material in the oxidized oil. Oil samples oxidized very readily on chromarods, even at low temperature, which is a particular advantage for antioxidant screening. At 45 °C, the oil oxidation rate was relatively low, but the relationship between the content of polar material and reaction time was linear. At 65 °C, if the content of polar material was below 50 %, the above relationship was still linear. At different temperatures, the action of tocopherol appeared to vary slightly. For example, at 65 °C, the oxidative stability of the oil sample was determined by the content of tocopherol, especially γ-tocopherol. At 45 and 55 °C, the oxidative stability was determined by both the content of tocopherol and polyunsaturated fatty acids. Of the tocopherol isomers, γ-tocopherol exhibited the highest antioxidant potency, consistent with the published literature. These results suggest that chromarods provide good media for monitoring oil oxidation for antioxidant screening. A particular advantage is the use of very small oil samples, usually 1–2 μL, and the ability to analyze multiple samples at the same time.  相似文献   

15.
Lipid oxidation is one of the major causes of oil deterioration causing off-flavors and consumer rejection. Fast, easy, and dependable assays for predicting lipid oxidation rates in foods are important for shelf-life prediction. In this study, an electron paramagnetic resonance (EPR) spin-trapping technique with N-tert-butyl-α-phenylnitrone (PBN) was tested to determine the lag phase of lipid oxidation in stripped soybean oil (SSO), SSO with added α-tocopherol, and commercial soybean, canola and corn oils. EPR intensity of spin-trapped products from SSO correlated well with lipid hydroperoxides formation for samples stored at 37 and 55 °C respectively. When the antioxidant α-tocopherol was added, the EPR signal intensity of oil samples increased—indicating sample deterioration—after 50–65% of α-tocopherol was consumed. When using the EPR method with commercial soybean, canola or corn oil stored at 55 °C, there was a poor relationship between EPR intensity and lipid hydroperoxides lag phases. However, a linear correlation was found between EPR signal intensity and hexanal formation. For example, EPR signal intensity lag phases were 5, 13 and 27 days for soybean, canola and corn oils, respectively which was similar to the hexanal lag phases of 5, 13 and 25 days for the same oils. The EPR spin-trapping assay method has several advantages over headspace hexanal measurements, especially with regard to easier sample handling and shorter analysis times.  相似文献   

16.
The antioxidant effects of hydrophilic phenols and tocopherols on the oxidative stability in virgin olive oils and in purified olive oil have been evaluated. Total hydrophilic phenols and the oleosidic forms of 3,4-dihydroxyphenolethanol (3,4-DHPEA) were correlated (r=0.97) with the oxidative stability of virgin olive oil. On the contrary, tocopherols showed low correlation (r=0.05). Purified olive oil with the dialdehydic form of elenolic acid linked to 3,4-DHPEA, an isomer of oleuropeine aglycon, and 3,4-DHPEA had good oxidative stability. A synergistic effect was observed in the mixture of 3,4-DHPEA and its oleosidic forms with α-tocopherol in purified olive oil by the Rancimat method at 120°C.  相似文献   

17.
Determination of oxidative stability of different edible oils, fats, and typical fat products was made using the Rancimat method and the active oxygen method. Induction periods (IP) were recorded under controlled conditions at 110, 120, and 130 ± 0.1°C for all products and over a range of 100–160°C for selected fats. A general oil stability evaluation industrial shortenings and vanaspati to be the most stable fats, with IP ranging from 10.00 to 15.47 h. Margarine and butter samples (IP, 4.98–6.04 h) were also found to show fair oxidative stability. Among the extracted and open-market salad-grade cooking oils, rapeseed oil (IP, 4.10 h) and soybean oil (IP, 4.00 h) showed the highest oxidative stability, whereas Salicornia bigelovii oil (IP, 1.40 h) was the least stable. The induction periods of typical fat products ranged from 2.59 to 9.20 h. CV for four determinations were <5.2% for shortening and vanaspati products and <4.3% for various vegetable oils, margarine, butter, and typical fat products. Rancimat IP values obtained at 110, 120, and 130°C were 40–46, 20–25, and 9–13% of active oxygen method values, respectively, corresponding to a decrease in Rancimat IP by a factor of 1.99 with each 10°C increase in temperature. Similarly, in the temperature range 100–160°C, an increase of 10°C decreased the Rancimat IP by a factor of 1.99  相似文献   

18.
Oil was extracted from the seeds of white-flesh and red-flesh dragon fruits (Hylocereus spp.) using a cold extraction process with petroleum ether. The seeds contained significant amounts of oil (32–34 %). The main fatty acids were linoleic acid (C18:2, 45–55 %), oleic acid (C18:1, 19–24 %), palmitic acid (C16:0, 15–18 %) and stearic acid (C18:0, 7–8 %). The seed oils are interesting from a nutritional point of view as they contain a large amount of essential fatty acids, amounting to up to 56 %. In both dragon fruit seed oils, tri-unsaturated triacylglycerol (TAG) was mainly found while their TAG composition and relative percentage however varied considerably. Therefore, they showed a different melting profile. A significant amount of total tocopherols was observed (407–657 mg/kg) in which the α-tocopherol was the most abundant (~72 % of total tocopherol content). The impact of storage conditions, cold and room temperatures, on the oxidative stability and behavior of tocopherols was monitored over a 3-month storage period. During storage, the oxidative profile changed with a favorably low oxidation rate (~1 mequiv O2/week) whilst tocopherols decreased the most at room temperature. After 12 weeks, the total tocopherol content, however, still remained high (65–84 % compared to the initial oils). Hereto, the dragon fruit seed oils can be considered as a potential source of essential fatty acids and tocopherols, with a good oxidative resistance.  相似文献   

19.
In this study, the effects of leaf addition, maturity stage and storage on the antioxidant content and activity of olive oils (cv. Memecik) were investigated in the 2008/09 and 2009/10 crop seasons. Olive fruits were harvested at two different maturity stages (early and late), and the leaves of the same cultivar were added at different rates (0, 1, and 3 %) prior to oil extraction. After extraction, the oil samples were stored for 18 months and total chlorophyll, α-tocopherol, total phenolic content and the antioxidant activity [DPPH· (2,2-diphenyl-1-picrylhydrazyl) and ABTS·+ (2,2-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid) radical scavenging] were determined at 6 month-intervals. Olive leaf addition induced a significant increase in total chlorophyll, α-tocopherol, total phenolic content, and antioxidant activities in both years (P < 0.001). During the storage period antioxidant content and antioxidant activities in the oils significantly decreased in both years (P < 0.001). However, the oils to which leaf material was added had higher antioxidant contents and activities than those without leaf material addition at the end of the 18-month storage period. After storage, the antioxidant content and DPPH· radical scavenging activity of control (0 %) samples were lower than those in the leaf added samples (3 %). The data obtained from this study suggested that the addition of olive leaf to oils allowed more functional olive oils with higher antioxidant contents.  相似文献   

20.
The mixture of different proportions of sunflower with chia oil provides a simple method to prepare edible oils with a wide range of desired fatty acid compositions. Sunflower–chia (90:10 and 80:20 wt/wt) oil blends with the addition of rosemary (ROS), ascorbyl palmitate (AP) and their blends (AP:ROS) were formulated to evaluate the oxidative stability during storage at two temperature levels normally used, cool (4 ± 1 °C) and room temperature (20 ± 2 °C) for a period of 360 days. Peroxide values (PV) of the oil blends with antioxidants stored at 4 ± 1 °C showed levels ≤10.0 mequiv O2/kg oil; the lowest levels of PV were found for blends with AP:ROS. Values higher than 10.0 mequiv O2/kg were observed between 120–240 days for oil blends stored at 20 ± 2 °C. Similar trends were observed with p-anisidine and Totox values. The oxidative stability determined by the Rancimat method and differential scanning calorimetry showed a greater susceptibility of the oils to oxidative deterioration with increasing unsaturated fatty acids content. The addition of antioxidants increased the induction time and decreased the Arrhenius rate constant, indicating an improvement in the oxidative stability for all the oil blends. Temperature had a strong influence on the stability of these blends during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号