首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human papillomavirus (HPV)(+) and HPV(−) head and neck cancer (HNC) cells’ interactions with the host immune system are poorly understood. Recently, we identified molecular and functional differences in exosomes produced by HPV(+) vs. HPV(−) cells, suggesting that genetic cargos of exosomes might identify novel biomarkers in HPV-related HNCs. Exosomes were isolated by size exclusion chromatography from supernatants of three HPV(+) and two HPV(−) HNC cell lines. Paired cell lysates and exosomes were analyzed for messenger RNA (mRNA) by qRT-PCR and microRNA (miR) contents by nanostring analysis. The mRNA profiles of HPV(+) vs. HPV(−) cells were distinct, with EGFR, TP53 and HSPA1A/B overexpressed in HPV(+) cells and IL6, FAS and DPP4 in HPV(−) cells. The mRNA profiles of HPV(+) or HPV(−) exosomes resembled the cargo of their parent cells. miR expression profiles in cell lysates identified 8 miRs expressed in HPV(−) cells vs. 14 miRs in HPV(+) cells. miR-205-5p was exclusively expressed in HPV(+) exosomes, and miR-1972 was only detected in HPV(−) exosomes. We showed that HPV(+) and HPV(−) exosomes recapitulated the mRNA expression profiles of their parent cells. Expression of miRs was dependent on the HPV status, and miR-205-5p in HPV(+) and miR-1972 in HPV(−) exosomes emerge as potential discriminating HPV-associated biomarkers.  相似文献   

2.
Cancer is a phenomenon broadly related to ageing in various ways such as cell cycle deregulation, metabolic defects or telomerases dysfunction as principal processes. Although the tumor cell is the main actor in cancer progression, it is not the only element of the disease. Cells and the matrix surrounding the tumor, called the tumor microenvironment (TME), play key roles in cancer progression. Phenotypic changes of the TME are indispensable for disease progression and a few of these transformations are produced by epigenetic changes including miRNA dysregulation. In this study, we found that a specific group of miRNAs in the liver TME produced by colon cancer called geromiRs, which are miRNAs related to the ageing process, are significantly downregulated. The three principal cell types involved in the liver TME, namely, liver sinusoidal endothelial cells, hepatic stellate (Ito) cells and Kupffer cells, were isolated from a murine hepatic metastasis model, and the miRNA and gene expression profiles were studied. From the 115 geromiRs and their associated hallmarks of aging, which we compiled from the literature, 75 were represented in the used microarrays, 26 out of them were downregulated in the TME cells during colon cancer colonization of the liver, and none of them were upregulated. The histone modification hallmark of the downregulated geromiRs is significantly enriched with the geromiRs miR-15a, miR-16, miR-26a, miR-29a, miR-29b and miR-29c. We built a network of all of the geromiRs downregulated in the TME cells and their gene targets from the MirTarBase database, and we analyzed the expression of these geromiR gene targets in the TME. We found that Cercam and Spsb4, identified as prognostic markers in a few cancer types, are associated with downregulated geromiRs and are upregulated in the TME cells.  相似文献   

3.
Breast cancer (BC) brain metastases is a life-threatening condition to which accounts the poor understanding of BC cells’ (BCCs) extravasation into the brain, precluding the development of preventive strategies. Thus, we aimed to unravel the players involved in the interaction between BCCs and blood–brain barrier (BBB) endothelial cells underlying BBB alterations and the transendothelial migration of malignant cells. We used brain microvascular endothelial cells (BMECs) as a BBB in vitro model, under conditions mimicking shear stress to improve in vivo-like BBB features. Mixed cultures were performed by the addition of fluorescently labelled BCCs to distinguish individual cell populations. BCC–BMEC interaction compromised BBB integrity, as revealed by junctional proteins (β-catenin and zonula occludens-1) disruption and caveolae (caveolin-1) increase, reflecting paracellular and transcellular hyperpermeability, respectively. Both BMECs and BCCs presented alterations in the expression pattern of connexin 43, suggesting the involvement of the gap junction protein. Myosin light chain kinase and phosphorylated myosin light chain were upregulated, revealing the involvement of the endothelial cytoskeleton in the extravasation process. β4-Integrin and focal adhesion kinase were colocalised in malignant cells, reflecting molecular interaction. Moreover, BCCs exhibited invadopodia, attesting migratory properties. Collectively, hub players involved in BC brain metastases formation were unveiled, disclosing possible therapeutic targets for metastases prevention.  相似文献   

4.
Programmed cell death ligand-1 (PD-L1) overexpressed on cancer cells has emerged as a key inhibitor that maintains the immunosuppressive microenvironment through its interaction with the PD-1 receptor in cancer. Here, we demonstrated that miR-424-5p delivery via extracellular vesicles (EVs) derived from adipose tissue-mesenchymal stromal cells (AT-MSCs) partly promotes proinflammation and enhances antitumor cytotoxicity in vitro and in vivo. Triple negative breast cancer (TNBC) exhibits increased expression of PD-L1, and PD-L1 is positively correlated with the overall survival of patients with TNBC. PD-L1 shows relatively higher expression in MDA-MB-231 (MM231) cells and can be downregulated by miR-424-5p. Furthermore, miR-424-5p transported by EVs can increase the secretion of proinflammatory cytokines, decrease the secretion of anti-inflammatory cytokines and promote the apoptosis of tumor cells. The intratumoral administration of miR-424-5p-EVs significantly slowed tumor growth. In conclusion, these results demonstrate that EVs may serve as a delivery system for novel immunotherapies for TNBC through the miR-424-5p/PD-L1 pathway.  相似文献   

5.
Aberrant expression of microRNAs (miRNAs) is involved in the development and progression of various types of cancers. In this study, we investigated the role of miR-331-3p in cell proliferation and the expression of keratinocyte differentiation markers of uterine cervical cancer cells. Moreover, we evaluated whether neuropilin 2 (NRP2) are putative target molecules that regulate the human papillomavirus (HPV) related oncoproteins E6 and E7. Cell proliferation in the human cervical cancer cell lines SKG-II, HCS-2, and HeLa was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Cellular apoptosis was measured using the TdT-mediated dUTP nick end labeling (TUNEL) and Annexin V assays. Quantitative RT-PCR was used to measure the messenger RNA (mRNA) expression of the NRP2, E6, E7, p63, and involucrin (IVL) genes. A functional assay for cell growth was performed using cell cycle analyses. Overexpression of miR-331-3p inhibited cell proliferation, and induced G2/M phase arrest and apoptosis in SKG-II, HCS-2 and HeLa cells. The luciferase reporter assay of the NRP2 3′-untranslated region revealed the direct regulation of NRP2 by miR-331-3p. Gene expression analyses using quantitative RT-PCR in SKG-II, HCS-2, and HeLa cells overexpressing miR-331-3p or suppressing NRP2 revealed down-regulation of E6, E7, and p63 mRNA and up-regulation of IVL mRNA. Moreover, miR-331-3p overexpression was suppressed NRP2 expression in protein level. We showed that miR-331-3p and NRP2 were key effectors of cell proliferation by regulating the cell cycle, apoptosis. NRP-2 also regulates the expression of E6/E7 and keratinocyte differentiation markers. Our findings suggest that miR-331-3p has an important role in regulating cervical cancer cell proliferation, and that miR-331-3p may contribute to keratinocyte differentiation through NRP2 suppression. miR-331-3p and NRP2 may contribute to anti-cancer effects.  相似文献   

6.
To determine the relationships between miR-96-5p/-182-5p and GPC1 in pancreatic cancer (PC), we conducted the population and in vitro studies. We followed 38 pancreatic cancer patients, measured and compared the expression of miR-96-5p/-182-5p, GPC1, characteristics and patients’ survival time of different miR-96-5p/-182-5p expression levels in PC tissues. In an in vitro study, we investigated the proliferation, cycle and apotosis in cells transfected with mimics/inhibitors of the two miRNAs, and determine their effects on GPC1 by dual-luciferase assay. In the follow-up study, we found that the expressions of miR-96-5p/-182-5p were lower/higher in PC tissues; patients with lower/higher levels of miR-96-5p/-182-5p suffered poorer characteristics and decreased survival time. In the in vitro study, the expressions of miR-96-5p/-182-5p were different in cells. Proliferation of cells transfected with miR-96-5p mimics/inhibitors was lower/higher in Panc-1/BxPC-3; when transfected with miR-182-5p mimics/inhibitors, proliferation of cells were higher/lower in AsPC-1/Panc-1. In a cell cycle study, panc-1 cells transfected with miR-96-5p mimics was arrested at G0/G1; BxPC-3 cells transfected with miR-96-5p inhibitors showed a significantly decrease at G0/G1; AsPC-1 cells transfected with miR-182-5p mimics was arrested at S; Panc-1 cells transfected with miR-182-5p inhibitors showed a decrease at S. MiR-96-5p mimics increased the apoptosis rate in Panc-1 cells, and its inhibitors decreased the apoptosis rate in BxPC-3. Dual luciferase assay revealed that GPC1 was regulated by miR-96-5p, not -182-5p. We found that miR-96-5p/-182-5p as good markers for PC; miR-96-5p, rather than -182-5p, inhibits GPC1 to suppress proliferation of PC cells.  相似文献   

7.
Metformin, a drug approved for diabetes type II treatment, has been associated with a reduction in the incidence of breast cancer and metastasis and increased survival in diabetic breast cancer patients. High levels of miR-26a expression have been proposed as one of the possible mechanisms for this effect; likewise, this miRNA has also been associated with survival/apoptosis processes in breast cancer. Our aim was to evaluate if miR-26a and some of its targets could mediate the effect of metformin in breast cancer. The viability of MDA-MB-231, MDA-MB-468, and MCF-7 breast cancer cell lines was evaluated with an MTT assay after ectopic overexpression and/or downregulation of miR-26a. Similarly, the expression levels of the miR-26a targets CASP3, CCNE2, ABL2, APAF1, XIAP, BCL-2, PTEN, p53, E2F3, CDC25A, BCL2L1, MCL-1, EZH2, and MTDH were assessed by quantitative polymerase chain reaction (PCR). The effect of metformin treatment on breast cancer cell viability and miR-26a, BCL-2, PTEN, MCL-1, EZH2, and MTDH modulation were evaluated. Wound healing experiments were performed to analyze the effect of miR-26a and metformin treatment on cell migration. MiR-26a overexpression resulted in a reduction in cell viability that was partially recovered by inhibiting it. E2F3, MCL-1, EZH2, MTDH, and PTEN were downregulated by miR-26a and the PTEN (phosphatase and tensin homolog) protein was also reduced after miR-26a overexpression. Metformin treatment reduced breast cancer cell viability, increased miR-26a expression, and led to a reduction in BCL-2, EZH2, and PTEN expression. miR-26a inhibition partly prevents the metformin viability effect and the PTEN and EZH2 expression reduction. Our results indicate that metformin effectively reduces breast cancer cell viability and suggests that the effects of the drug are mediated by an increase in miR-26a expression and a reduction of its targets, PTEN and EHZ2 Thus, the use of metformin in breast cancer treatment constitutes a promising potential breast cancer therapy.  相似文献   

8.
During metastasis, cancer cells that originate from the primary tumor circulate in the bloodstream, extravasate, and form micrometastases at distant locations. Several lines of evidence suggest that specific interactions between cancer cells and endothelial cells, in particular tumor cell adhesion to the endothelium and transendothelial migration, play a crucial role in extravasation. Here we have studied the role of vascular endothelial (VE)-cadherin which is expressed aberrantly by breast cancer cells and might promote such interactions. By comparing different human breast cancer cell lines, we observed that the number of cancer cells that adhered to endothelium correlated with VE-cadherin expression levels. VE-cadherin silencing experiments confirmed that VE-cadherin enhances cancer cell adhesion to endothelial cells. However, in contrast, the number of cancer cells that incorporated into the endothelium was not dependent on VE-cadherin. Thus, it appears that cancer cell adhesion and incorporation are distinct processes that are governed by different molecular mechanisms. When cancer cells incorporated into the endothelial monolayer, they formed VE-cadherin positive contacts with endothelial cells. On the other hand, we also observed tumor cells that had displaced endothelial cells, reflecting either different modes of incorporation, or a temporal sequence where cancer cells first form contact with endothelial cells and then displace them to facilitate transmigration. Taken together, these results show that VE-cadherin promotes the adhesion of breast cancer cells to the endothelium and is involved in the initial phase of incorporation, but not their transmigration. Thus, VE-cadherin might be of relevance for therapeutic strategies aiming at preventing the metastatic spread of breast cancer cells.  相似文献   

9.
The primary mechanism by which adipose-derived stem cells (ASCs) exert their reparative or regenerative potential relies predominantly on paracrine action. Secretory abilities of ASCs have been found to be amplified by hypoxia pre-conditioning. This study investigates the impact of hypoxia (1% O2) on the secretome composition of pig ASCs (pASCs) and explores the effect of pASCs’ conditioned media (CM) on skin cell functions in vitro and the expression of markers attributed to wound healing. Exposure of pASCs to hypoxia increased levels of vascular endothelial growth factor (VEGF) in CM-Hyp compared to CM collected from the cells cultured in normoxia (CM-Nor). CM-Hyp promoted the migratory ability of pig keratinocytes (pKERs) and delayed migration of pig dermal fibroblasts (pDFs). Exposure of pKERs to either CM-Nor or CM-Hyp decreased the levels of pro-fibrotic indicators WNT10A and WNT11. Furthermore, CM-Hyp enhanced the expression of KRT14, the marker of the basal epidermis layer. In contrast, CM-Nor showed a stronger effect on pDFs manifested by increases in TGFB1, COL1A1, COL3A1, and FN1 mRNA expression. The formation of three-dimensional endothelial cell networks was improved in the presence of CM-Hyp. Overall, our results demonstrate that the paracrine activity of pASCs affects skin cells, and this property might be used to modulate wound healing.  相似文献   

10.
8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer.  相似文献   

11.
Colon cancer is one of the most common tumors of the digestive tract. Resistance to ionizing radiation (IR) decreased therapeutic efficiency in these patients’ radiotherapy. XRCC2 is the key protein of DNA homologous recombination repair, and its high expression is associated with enhanced resistance to DNA damage induced by IR. Here, we investigated the effect of XRCC2 silencing on colon tumor cells’ growth and sensitivity to X-radiation in vitro and in vivo. Colon tumor cells (T84 cell line) were cultivated in vitro and tumors originated from the cell line were propagated as xenografts in nude mice. The suppression of XRCC2 expression was achieved by using vector-based short hairpin RNA (shRNA) in T84 cells. We found that the knockdown of XRCC2 expression effectively decreased T84 cellular proliferation and colony formation, and led to cell apoptosis and cell cycle arrested in G2/M phase induced by X-radiation in vitro. In addition, tumor xenograft studies suggested that XRCC2 silencing inhibited tumorigenicity after radiation treatment in vivo. Our data suggest that the suppression of XRCC2 expression rendered colon tumor cells more sensitive to radiation therapy in vitro and in vivo, implying XRCC2 as a promising therapeutic target for the treatment of radioresistant human colon cancer.  相似文献   

12.
MicroRNAs (miRNAs) can be secreted into body fluids and have thus been reported as a new type of cancer biomarker. This study aimed to determine whether urinary miRNAs act as noninvasive biomarkers for diagnosing bladder cancer. Small RNA profiles from urine were generated for 10 patients with bladder cancer and 10 healthy controls by using next-generation sequencing. We identified 50 urinary miRNAs that were differentially expressed in bladder cancer compared with controls, comprising 44 upregulated and six downregulated miRNAs. Pathway enrichment analysis revealed that the biological role of these differentially expressed miRNAs might be involved in cancer-associated signaling pathways. Further analysis of the public database revealed that let-7b-5p, miR-149-5p, miR-146a-5p, miR-193a-5p, and miR-423-5p were significantly increased in bladder cancer compared with corresponding adjacent normal tissues. Furthermore, high miR-149-5p and miR-193a-5p expression was significantly correlated with poor overall survival in patients with bladder cancer. The qRT-PCR approach revealed that the expression levels of let-7b-5p, miR-149-5p, miR-146a-5p and miR-423-5p were significantly increased in the urine of patients with bladder cancer compared with those of controls. Although our results indicated that urinary miRNAs are promising biomarkers for diagnosing bladder cancer, this must be validated in larger cohorts in the future.  相似文献   

13.
Hepatoma-derived growth factor (HDGF) is a unique nuclear/growth factor that plays an important role in the progression of different types of cancer. A total of 63 patients with early-stage cervical adenocarcinoma (Cx) were enrolled in this retrospective study. The expression of HDGF was significantly increased compared with adjacent non-tumor tissue samples (p < 0.001). Moreover, elevated nuclear HDGF levels were correlated with lymph-vascular space invasion (LVSI; p < 0.05), lymph node metastasis (LNM; p < 0.001), recurrence (p < 0.001) and advanced grade (AG; p < 0.001). The growth of cervical cancer cells (Hela cells) was enhanced by HDGF treatment. The HDGF mRNA and protein level were significantly higher in malignant cervical cancer cells compared with primary ones. By adenovirus gene delivery, HDGF overexpression enhanced, whereas HDGF knockdown perturbed the tumorigenic behaviors of cervical cancer cells. HDGF overexpression is common in early-stage cervical adenocarcinoma and is involved in the carcinogenesis of cervical adenocarcinoma. Cytoplasmic HDGF expression is strongly correlated with pelvic lymph node metastasis and recurrence, indicating that HDGF may serve as a novel prognostic marker for patients with Cx.  相似文献   

14.
Gene therapy research has advanced to clinical trials, but it is hampered by unstable nucleic acids packaged inside carriers and there is a lack of specificity towards targeted sites in the body. This study aims to address gene therapy limitations by encapsidating a plasmid synthesizing a short hairpin RNA (shRNA) that targets the anti-apoptotic Bcl-2 gene using truncated hepatitis B core antigen (tHBcAg) virus-like particle (VLP). A shRNA sequence targeting anti-apoptotic Bcl-2 was synthesized and cloned into the pSilencer 2.0-U6 vector. The recombinant plasmid, namely PshRNA, was encapsidated inside tHBcAg VLP and conjugated with folic acid (FA) to produce FA-tHBcAg-PshRNA VLP. Electron microscopy revealed that the FA-tHBcAg-PshRNA VLP has an icosahedral structure that is similar to the unmodified tHBcAg VLP. Delivery of FA-tHBcAg-PshRNA VLP into HeLa cells overexpressing the folate receptor significantly downregulated the expression of anti-apoptotic Bcl-2 at 48 and 72 h post-transfection. The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay demonstrated that the cells’ viability was significantly reduced from 89.46% at 24 h to 64.52% and 60.63%, respectively, at 48 and 72 h post-transfection. As a conclusion, tHBcAg VLP can be used as a carrier for a receptor-mediated targeted delivery of a therapeutic plasmid encoding shRNA for gene silencing in cancer cells.  相似文献   

15.
Maternal obesity disrupts both placental angiogenesis and fetus development. However, the links between adipocytes and endothelial cells in maternal obesity are not fully understood. The aim of this study was to characterize exosome-enriched miRNA from obese sow’s adipose tissue and evaluate the effect on angiogenesis of endothelial cells. Plasma exosomes were isolated and analyzed by nanoparticle tracking analysis (NTA), electron morphological analysis, and protein marker expression. The number of exosomes was increased as the gestation of the sows progressed. In addition, we found that exosomes derived from obese sows inhibited endothelial cell migration and angiogenesis. miRNA detection showed that miR-221, one of the miRNAs, was significantly enriched in exosomes from obese sows. Further study demonstrated that exosomal miR-221 inhibited the proliferation and angiogenesis of endothelial cells through repressing the expression of Angptl2 by targeting its 3′ untranslated region. In summary, miR-221 was a key component of the adipocyte-secreted exosomal vesicles that mediate angiogenesis. Our study may be a novel mechanism showing the secretion of “harmful” exosomes from obesity adipose tissues causes placental dysplasia during gestation.  相似文献   

16.
The ST6GALNAC5 gene that encodes an α2,6-sialyltransferase involved in the biosynthesis of α-series gangliosides, was previously identified as one of the genes that mediate breast cancer metastasis to the brain. We have shown that the expression of ST6GALNAC5 in MDA-MB-231 breast cancer cells resulted in the expression of GD1α ganglioside at the cell surface. By using a human blood-brain barrier in vitro model recently developed, consisting in CD34+ derived endothelial cells co-cultivated with pericytes, we show that ST6GALNAC5 expression decreased the interactions between the breast cancer cells and the human blood-brain barrier.  相似文献   

17.
Following an intraventricular hemorrhage (IVH), red blood cell lysis and hemoglobin (Hb) oxidation with the release of heme can cause sterile neuroinflammation. In this study, we measured Hb derivates and cellular adhesion molecules ICAM-1 and VCAM-1 with cell-free miRNAs in cerebrospinal fluid (CSF) samples obtained from Grade-III and Grade-IV preterm IVH infants (IVH-III and IVH-IV, respectively) at multiple time points between days 0–60 after the onset of IVH. Furthermore, human choroid plexus epithelial cells (HCPEpiCs) were incubated with IVH and non-IVH CSF (10 v/v %) for 24 h in vitro to investigate the IVH-induced inflammatory response that was investigated via: (i) HMOX1, IL8, VCAM1, and ICAM1 mRNAs as well as miR-155, miR-223, and miR-181b levels by RT-qPCR; (ii) nuclear translocation of the NF-κB p65 subunit by fluorescence microscopy; and (iii) reactive oxygen species (ROS) measurement. We found a time-dependent alteration of heme, IL-8, and adhesion molecules which revealed a prolonged elevation in IVH-IV vs. IVH-III with higher miR-155 and miR-181b expression at days 41–60. Exposure of HCPEpiCs to IVH CSF samples induced HMOX1, IL8, and ICAM1 mRNA levels along with increased ROS production via the NF-κB pathway activation but without cell death, as confirmed by the cell viability assay. Additionally, the enhanced intracellular miR-155 level was accompanied by lower miR-223 and miR-181b expression in HCPEpiCs after CSF treatment. Overall, choroid plexus epithelial cells exhibit an abnormal cell phenotype after interaction with pro-inflammatory CSF of IVH origin which may contribute to the development of later clinical complications in preterm IVH.  相似文献   

18.
MicroRNA-124 (miR-124) is strongly expressed in neurons, and its expression increases as neurons mature. Through DNA methylation in the miR-124 promoter region and adsorption of miR-124 by non-coding RNAs, miR-124 expression is known to be reduced in many cancer cells, especially with high malignancy. Recently, numerous studies have focused on miR-124 due to its promising tumor-suppressive effects; however, the overview of their results is unclear. We surveyed the tumor-suppressive effect of miR-124 in glial cell lineage cancers, which are the most frequently reported cancer types involving miR-124, and in lung, colon, liver, stomach, and breast cancers, which are the top five causes of cancer death. Reportedly, miR-124 not only inhibits proliferation and accelerates apoptosis, but also comprehensively suppresses tumor malignant transformation. Moreover, we found that miR-124 exerts its anti-tumor effects by regulating a wide range of target genes, most notably STAT3 and EZH2. In addition, when compared to the original role of miR-124 in neuronal development, we found that the miR-124 target genes that contribute to neuronal maturation share similarities with genes that cause cancer cell metastasis and epithelial-mesenchymal transition. We believe that the two apparently unrelated fields, cancer and neuronal development, can bring new discoveries to each other through the study of miR-124.  相似文献   

19.
Gastric cancer’s bad incidence, prognosis, cellular and molecular heterogeneity amongst others make this disease a major health issue worldwide. Understanding this affliction is a priority for proper patients’ management and for the development of efficient therapeutical strategies. This review gives an overview of major scientific advances, made during the past 5-years, to improve the comprehension of gastric adenocarcinoma. A focus was made on the different actors of gastric carcinogenesis, including, Helicobacter pylori cancer stem cells, tumour microenvironment and microbiota. New and recent potential biomarkers were assessed as well as emerging therapeutical strategies involving cancer stem cells targeting as well as immunotherapy. Finally, recent experimental models to study this highly complex disease were discussed, highlighting the importance of gastric cancer understanding in the hard-fought struggle against cancer relapse, metastasis and bad prognosis.  相似文献   

20.
Small-cell lung cancer (SCLC) is characterized as an aggressive tumor with brain metastasis. Although preventing SCLC metastasis to the brain is immensely important for survival, the molecular mechanisms of SCLC cells penetrating the blood–brain barrier (BBB) are largely unknown. Recently, visfatin has been considered as a novel pro-inflammatory adipocytokine involved in various cancers. Herein, we present evidence that elevated levels of visfatin in the serum of SCLC patients were associated with brain metastasis, and visfain was increased in NCI-H446 cells, a SCLC cell line, during interacting with human brain microvascular endothelial cells (HBMEC). Using in vitro BBB model, we found that visfatin could promote NCI-H446 cells migration across HBMEC monolayer, while the effect was inhibited by knockdown of visfatin. Furthermore, our findings indicated that CC chemokine ligand 2 (CCL2) was involved in visfatin-mediated NCI-H446 cells transendothelial migtation. Results also showed that the upregulation of CCL2 in the co-culture system was reversed by blockade of visfatin. In particular, visfatin-induced CCL2 was attenuated by specific inhibitor of PI3K/Akt signaling in NCI-H446 cells. Taken together, we demonstrated that visfatin was a prospective target for SCLC metastasis to brain, and understanding the molecular mediators would lead to effective strategies for inhibition of SCLC brain metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号