首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的探讨胱抑素C在新生儿高胆红血症肾功能损害中的检测意义。方法选取2008年1月至2010年12月于我院进行治疗的68例高胆红血症患儿为观察组,同时选取同期的68名健康新生儿为对照组,分别检测对照组及观察组发病后1d、3d及7d的血清BUN、Cr,尿NAG、GAL及血清Cys水平进行检测及比较。结果观察组发病后1d、3d及7d的血清BUN、Cr和尿NAG、GAL及血清Cys水平均高于对照组,且随着病情加重其水平呈现上升趋势,P<0.05或P<0.01,均表示差异有统计学意义,但随时间推移血清BUN、Cr和尿NAG、GAL波动较大,血清Cys水平波动较小。结论胱抑素C可作为新生儿高胆红血症肾功能损害的重要检测指标,效果较好,值得临床进一步研究及应用。  相似文献   

2.
目的探讨孕妇各项肝功能特别是未结合胆红素直接测定法结果与新生儿高胆红素血症的关系。方法对本院295例孕妇肝功能指标与新生儿高胆红素血症关系进行前瞻性研究。结果新生儿高胆红素血症患儿与孕妇血清转氨酶(ALT)、间接胆红素(直接测定法)(IBIL)、血清胆汁酸(TBA)存在相关性。结论我们可以监测围生期孕妇的肝功能,并能尽早的对新生儿高胆红素血症或核黄疸进行干预。  相似文献   

3.
Offspring born to diabetic or obese mothers have a higher lifetime risk of heart disease. Previously, we found that rat offspring exposed to late-gestational diabetes mellitus (LGDM) and maternal high-fat (HF) diet develop mitochondrial dysfunction, impaired cardiomyocyte bioenergetics, and cardiac dysfunction at birth and again during aging. Here, we compared echocardiography, cardiomyocyte bioenergetics, oxidative damage, and mitochondria-mediated cell death among control, pregestational diabetes mellitus (PGDM)-exposed, HF-diet-exposed, and combination-exposed newborn offspring. We hypothesized that PGDM exposure, similar to LGDM, causes mitochondrial dysfunction to play a central, pathogenic role in neonatal cardiomyopathy. We found that PGDM-exposed offspring, similar to LGDM-exposed offspring, have cardiac dysfunction at birth, but their isolated cardiomyocytes have seemingly less bioenergetics impairment. This finding was due to confounding by impaired viability related to poorer ATP generation, more lipid peroxidation, and faster apoptosis under metabolic stress. To mechanistically isolate and test the role of mitochondria, we transferred mitochondria from normal rat myocardium to control and exposed neonatal rat cardiomyocytes. As expected, transfer provides a respiratory boost to cardiomyocytes from all groups. They also reduce apoptosis in PGDM-exposed males, but not in females. Findings highlight sex-specific differences in mitochondria-mediated mechanisms of developmentally programmed heart disease and underscore potential caveats of therapeutic mitochondrial transfer.  相似文献   

4.
In this study, curcumin loaded chitin nanogels (CCNGs) were developed using biocompatible and biodegradable chitin with an anticancer curcumin drug. Chitin, as well as curcumin, is insoluble in water. However, the developed CCNGs form a very good and stable dispersion in water. The CCNGs were analyzed by DLS, SEM and FTIR and showed spherical particles in a size range of 70-80 nm. The CCNGs showed higher release at acidic pH compared to neutral pH. The cytotoxicity of the nanogels were analyzed on human dermal fibroblast cells (HDF) and A375 (human melanoma) cell lines and the results show that CCNGs have specific toxicity on melanoma in a concentration range of 0.1-1.0 mg mL(-1), but less toxicity towards HDF cells. The confocal analysis confirmed the uptake of CCNGs by A375. The apoptotic effect of CCNGs was analyzed by a flow-cytometric assay and the results indicate that CCNGs at the higher concentration of the cytotoxic range showed comparable apoptosis as the control curcumin, in which there was negligible apoptosis induced by the control chitin nanogels. The CCNGs showed a 4-fold increase in steady state transdermal flux of curcumin as compared to that of control curcumin solution. The histopathology studies of the porcine skin samples treated with the prepared materials showed loosening of the horny layer of the epidermis, facilitating penetration with no observed signs of inflammation. These results suggest that the formulated CCNGs offer specific advantage for the treatment of melanoma, the most common and serious type of skin cancer, by effective transdermal penetration.  相似文献   

5.
Neonatal arterial ischemic stroke is one of the more severe birth complications. The injury can result in extensive neurological damage and is robustly associated with later diagnoses of cerebral palsy (CP). An important part of efforts to develop new therapies include the on-going refinement and understanding of animal models that capture relevant clinical features of neonatal brain injury leading to CP. The potent vasoconstrictor peptide, Endothelin-1 (ET-1), has previously been utilised in animal models to reduce local blood flow to levels that mimic ischemic stroke. Our previous work in this area has shown that it is an effective and technically simple approach for modelling ischemic injury at very early neonatal ages, resulting in stable deficits in motor function. Here, we aimed to extend this model to also examine the impact on cognitive function. We show that focal delivery of ET-1 to the cortex of Sprague Dawley rats on postnatal day 0 (P0) resulted in impaired learning in a touchscreen-based test of visual discrimination and correlated with important clinical features of CP including damage to large white matter structures.  相似文献   

6.
We currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal–curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC. Then, we evaluated the combination of PA-C delivery into the intrathecal space in a rat model of contusive SCI with stem cell transplantation. While we failed to observe significant improvements in locomotor function (BBB scale) in treated animals, histological analysis revealed that PA-C-treated or PA-C and iPSC-NSC + MSC-treated animals displayed significantly smaller scars, while PA-C and iPSC-NSC + MSC treatment induced the preservation of β-III Tubulin-positive axons. iPSC-NSC + MSC transplantation fostered the preservation of motoneurons and myelinated tracts, while PA-C treatment polarized microglia into an anti-inflammatory phenotype. Overall, the combination of stem cell transplantation and PA-C treatment confers higher neuroprotective effects compared to individual treatments.  相似文献   

7.
Chronic discogenic back pain is associated with increased inflammatory cytokine levels that can influence the proximal peripheral nervous system, namely the dorsal root ganglion (DRG). However, transition to chronic pain is widely thought to involve glial activation in the spinal cord. In this study, an in vitro model was used to evaluate the communication between DRG and spinal cord glia. Primary neonatal rat DRG cells were treated with/without inflammatory cytokines (TNF-α, IL-1β, and IL-6). The conditioned media were collected at two time points (12 and 24 h) and applied to spinal cord mixed glial culture (MGC) for 24 h. Adult bovine DRG and spinal cord cell cultures were also tested, as an alternative large animal model, and results were compared with the neonatal rat findings. Compared with untreated DRG-conditioned medium, the second cytokine-treated DRG-conditioned medium (following medium change, thus containing solely DRG-derived molecules) elevated CD11b expression and calcium signal in neonatal rat microglia and enhanced Iba1 expression in adult bovine microglia. Cytokine treatment induced a DRG-mediated microgliosis. The described in vitro model allows the use of cells from large species and may represent an alternative to animal pain models (3R principles).  相似文献   

8.
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.  相似文献   

9.
Neonatal hyperbilirubinemia (jaundice) is a common disease with high incidence. Currently, hemoperfusion (blood exchange transfusion) is always used for the treatment of severe hyperbilirubinemia. However, there are several limitations of blood exchange transfusion, such as the lack of a safe blood supply and blood transfusion complications, while the main problem of hemoperfusions is the inefficient performance of current bilirubin absorbent, which makes it impossible to administer to the neonatal hyperbilirubinemia cases. Identification of a bilirubin hemoperfusion adsorbent with overall excellent performance is the most crucial key to solving the above clinical problems. In this work, a novel bilirubin adsorbent was customized based on molecular design strategy, namely, functional polymeric microspheres were first fabricated by the copolymerization of glycidyl methacrylate with other monomers, and then modified with an amine component, followed by linking with a functional spacer molecule, and finally immobilized with a functional ligand (albumin). Its chemical and physical properties were characterized; its adsorption performances for bilirubin were investigated under clinical conditions; its medical safety were evaluated by hemolysis test, thrombotest, and platelet adhesion test. The results showed that the adsorbent had good adsorption performance for bilirubin compared to a popular commercial clinical bilirubin hemoperfusion column; and it also had excellent medical safety evaluations. This study sheds a new light on how to develop hemoperfusion bilirubin adsorbents with overall good clinical performance as well as a reference for later studies on this topic.  相似文献   

10.
In this review, we elucidate the mechanisms of Aβ oligomer toxicity which may contribute to Alzheimer's disease (AD). In particular, we discuss on the interaction of Aβ oligomers with the membrane through the process of adsorption and insertion. Such interaction gives rises to phase transitions in the sub-structures of the Aβ peptide from α-helical to β-sheet structure. By means of a coarse-grained model, we exhibit the tendency of β-sheet structures to aggregate, thus providing further insights to the process of membrane induced aggregation. We show that the aggregated oligomer causes membrane invagination, which is a precursor to the formation of pore structures and ion channels. Other pathological progressions to AD due to Aβ oligomers are also covered, such as their interaction with the membrane receptors, and their direct versus indirect effects on oxidative stress and intraneuronal accumulation. We further illustrate that the molecule curcumin is a potential Aβ toxicity inhibitor as a β-sheet breaker by having a high propensity to interact with certain Aβ residues without binding to them. The comprehensive understanding gained from these current researches on the various toxicity mechanisms show promises in the provision of better therapeutics and treatment strategies in the near future.  相似文献   

11.
Inflammation has a fundamental impact on the pathophysiology of osteoarthritis (OA), a common form of degenerative arthritis. It has previously been established that curcumin, a component of turmeric (Curcuma longa), has anti-inflammatory properties. This research evaluates the potentials of curcumin on the pathophysiology of OA in vitro. To explore the anti-inflammatory efficacy of curcumin in an inflamed joint, an osteoarthritic environment (OA-EN) model consisting of fibroblasts, T-lymphocytes, 3D-chondrocytes is constructed and co-incubated with TNF-α, antisense oligonucleotides targeting NF-kB (ASO-NF-kB), or an IkB-kinase (IKK) inhibitor (BMS-345541). Our results show that OA-EN, similar to TNF-α, suppresses chondrocyte viability, which is accompanied by a significant decrease in cartilage-specific proteins (collagen II, CSPG, Sox9) and an increase in NF-kB-driven gene proteins participating in inflammation, apoptosis, and breakdown (NF-kB, MMP-9, Cox-2, Caspase-3). Conversely, similar to knockdown of NF-kB at the mRNA level or at the IKK level, curcumin suppresses NF-kB activation, NF-kB-promotes gene proteins derived from the OA-EN, and stimulates collagen II, CSPG, and Sox9 expression. Furthermore, co-immunoprecipitation assay shows that curcumin reduces OA-EN-mediated inflammation and chondrocyte apoptosis, with concomitant chondroprotective effects, due to modulation of Sox-9/NF-kB signaling axis. Finally, curcumin selectively hinders the interaction of p-NF-kB-p65 directly with DNA—this association is disrupted through DTT. These results suggest that curcumin suppresses inflammation in OA-EN via modulating NF-kB-Sox9 coupling and is essential for maintaining homeostasis in OA by balancing chondrocyte survival and inflammatory responses. This may contribute to the alternative treatment of OA with respect to the efficacy of curcumin.  相似文献   

12.
Bladder cancer (BC) is the second most common genitourinary cancer. In 2018, 550,000 people in the world were diagnosed with BC, and the number of new cases continues to rise. BC is also characterized by high recurrence risk, despite therapies. Although in the last few years, the range of BC therapy has considerably widened, it is associated with severe side effects and the development of drug resistance, which is hampering treatment success. Thus, patients are increasingly choosing products of natural origin as an alternative or complementary therapeutic options. Therefore, in this article, we aim to elucidate, using the available literature, the role of natural substances such as curcumin, sulforaphane, resveratrol, quercetin, 6-gingerol, delphinidin, epigallocatechin-3-gallate and gossypol in the BC treatment. Numerous clinical and preclinical studies point to their role in the modulation of the signaling pathways, such as cell proliferation, cell survival, apoptosis and cell death.  相似文献   

13.
This study investigated cumulative damage mechanisms of short fiber type C/SiC under compression. To measure mechanical properties (unloading modulus and permanent strain) before fracture, repeated loading–unloading tests were conducted using a strain gage. Damage was observed to assess characteristics of crack density, length, number, and propagation angle. Furthermore, relations between mechanical properties and damage characteristics were elucidated by application of Basista’s equations and by substituting crack densities inferred from damage observations. Stress–strain relations revealed nonlinear behavior. The unloading modulus did not change, but the permanent strain increased. Cracks propagated mainly between fibers, without fiber fracture, connecting other cracks in the direction of orientation 0 deg to 30 deg to the compressive axis. We estimated permanent strain using Basista’s equations and damage characteristics. Estimates roughly agreed with experiment results, suggesting that the permanent strain increase is attributable to closed crack sliding and friction caused by increased crack density.  相似文献   

14.
Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.  相似文献   

15.
The current cancer chemotherapy often results in high toxicity, drug resistance and some other side effects. Multidrug chemotherapy has been found to reduce the side effects associated with the currently used chemotherapy. In this research, we have demonstrated the polymer-drug co-conjugation by incorporating two bioactive agents that is, curcumin and an analogue of ferrocene (both are anticancer agents) to a polymer by a hydrazone linker. The conjugates prepared were characterized by NMR spectroscopy.  相似文献   

16.
城市环境的污染、紫外线辐射、烫发剂、漂白剂以及头发的整理(洗发、吹风和梳理)等均会造成头发不同程度的损伤。头发损伤的基础研究就是研究不同物理和化学因素对头发造成损伤的作用机理、了解头发损伤与头发结构与组分的相互关系 ,并从保护头发免受损伤的角度出发探讨发用类产品的发展趋势。  相似文献   

17.
Human and animal studies have elucidated the apparent neurodevelopmental effects resulting from neonatal anesthesia. Observations of learning and behavioral deficits in children, who were exposed to anesthesia early in development, have instigated a flurry of studies that have predominantly utilized animal models to further interrogate the mechanisms of neonatal anesthesia-induced neurotoxicity. Specifically, while neonatal anesthesia has demonstrated its propensity to affect multiple cell types in the brain, it has shown to have a particularly detrimental effect on the gamma aminobutyric acid (GABA)ergic system, which contributes to the observed learning and behavioral deficits. The damage to GABAergic neurons, resulting from neonatal anesthesia, seems to involve structure-specific changes in excitatory-inhibitory balance and neurovascular coupling, which manifest following a significant interval after neonatal anesthesia exposure. Thus, to better understand how neonatal anesthesia affects the GABAergic system, we first review the early development of the GABAergic system in various structures that have been the focus of neonatal anesthesia research. This is followed by an explanation that, due to the prolonged developmental curve of the GABAergic system, the entirety of the negative effects of neonatal anesthesia on learning and behavior in children are not immediately evident, but instead take a substantial amount of time (years) to fully develop. In order to address these concerns going forward, we subsequently offer a variety of in vivo methods which can be used to record these delayed effects.  相似文献   

18.
In the tumor microenvironment, mesenchymal stromal cells (MSCs) are key modulators of cancer cell behavior in response to several stimuli. Intratumoral acidosis is a metabolic trait of fast-growing tumors that can induce a pro-tumorigenic phenotype in MSCs through the activation of the NF-κB-mediated inflammatory pathway, driving tumor clonogenicity, invasion, and chemoresistance. Recent studies have indicated that curcumin, a natural ingredient extracted from Curcuma longa, acts as an NF-κB inhibitor with anti-inflammatory properties. In this work, highly proliferating osteosarcoma cells were used to study the ability of curcumin to reduce the supportive effect of MSCs when stimulated by acidosis. Due to the poor solubility of curcumin in biological fluids, we used spherical polymeric nanoparticles as carriers (SPN-curc) to optimize its uptake by MSCs. We showed that SPN-curc inhibited the release of inflammatory cytokines (IL6 and IL8) by acidity-stimulated MSCs at a higher extent than by free curcumin. SPN-curc treatment was also successful in blocking tumor stemness, migration, and invasion that were driven by the secretome of acid-stressed MSCs. Overall, these data encourage the use of lipid–polymeric nanoparticles encapsulating NF-κB inhibitors such as curcumin to treat cancers whose progression is stimulated by an activated mesenchymal stroma.  相似文献   

19.
Curcumin, one of the major constituents of Curcuma longa, has been shown to inhibit depolarization-evoked glutamate release from rat prefrontocortical nerve terminals by reducing voltage-dependent Ca(2+) entry. This study showed that curcumin inhibited ionomycin-induced glutamate release and KCl-evoked FM1-43 release, suggesting that some steps after Ca(2+) entry are regulated by curcumin. Furthermore, disrupting the cytoskeleton organization using cytochalasin D abolished the inhibitory action of curcumin on ionomycin-induced glutamate release. Mitogen-activated protein kinase kinase (MEK) inhibition also prevented the inhibitory effect of curcumin on ionomycin-induced glutamate release. Western blot analyses showed that curcumin decreased the ionomycin-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, the main presynaptic target of ERK. These results show that curcumin-mediated inhibition of glutamate release involves modulating downstream events by controlling synaptic vesicle recruitment and exocytosis, possibly through a decrease of MAPK/ERK activation and synapsin I phosphorylation, thereby decreasing synaptic vesicle availability for exocytosis.  相似文献   

20.
This contribution deals with the investigation of a novel testing approach for identifying the strength of polymer-metal interfaces under shear, tensile and combined shear-tensile load. To this end, a specimen geometry, being deployable independent on the material pairing, is determined by a simulative parameter study. Within the according finite element simulations, the cohesive zone approach is applied for the interface and a user-defined material model for the polymer. The simulation results are validated from an aluminum/polyamide 6 hybrid manufactured by hot pressing. Here, a NiAl5 thermal spray layer is utilized as mechanical adhesion promoter. The numerical as well as the experimental results prove that the identified geometry is well suited to determine the strength of polymer-metal interfaces. Furthermore, the experimental results reveal that the quadratic stress damage initiation criterion for the cohesive zone model is not appropriate for the investigated interface. Consequently, an alternative damage initiation criterion is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号