首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
研制了一台能够连续制备蓄冷用CO2水合物的压缩式循环实验装置,并在该装置上研究了充注压力对水合物的预冷时间、生成质量、水合比例和潜热蓄冷量的影响。实验结果表明水合物在CO2气泡上升过程中生成,在气液界面处堆积。高的充注压力有着更理想的蓄冷特性,当充注压力为4.2 MPa时,预冷时间为8 min、水合物生成质量为8.44 kg、水合比例为75.1%、水合物潜热蓄冷量为4.22 MJ。充注压力为3.8 MPa及以上时,水合物生成量大,水合物阻碍釜内各部分的传热,使釜内中层、下层的温差较大。水合物生成过程后期,水合放热量减少,液体CO2在反应釜内的蒸发吸热效应使得釜内温度继续降低,一直到低于0℃,充注压力越高,此现象越明显。  相似文献   

2.
CO2置换CH4水合物中CH4的实验和动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
在自行设计的反应装置中考察了2.8 MPa和3.25 MPa压力下,温度271.2、273.2和276.0 K时CO2气体置换十二烷基硫酸钠(SDS)体系CH4水合物中CH4的置换过程。实验数据表明,在反应的前50 h,CH4水合物的分解速率较快,其后分解速率变慢。冰点以上CH4水合物的分解速率较快。基于动力学数据,建立了SDS体系置换反应过程中CH4水合物的分解动力学模型和CO2水合物的生成动力学模型。计算得到CH4-CO2置换反应过程中CH4水合物的分解活化能为28.81 kJ·mol-1,CO2水合物的生成活化能为68.40 kJ·mol-1。数据表明,CH4水合物的分解可能受置换反应过程中水分子的重排控制,而CO2水合物的生成可能受CO2气体在水合物中的扩散控制。  相似文献   

3.
周诗岽  王树立  张国忠 《现代化工》2013,33(2):60-63,65
针对CO2水合物自然生成速度慢这一技术难题,利用实验室自制的水合物实验系统,开展了十六烷基三甲基溴化铵(CTAB)体系下CO2水合物生成促进实验研究。考察了CTAB质量分数为200、300、500、700、900 mg/kg下对水合反应体系表面张力及CO2水合物生成特性影响规律,分析了CTAB对CO2水合物生成促进作用机理。实验结果表明,5种浓度下CTAB添加剂均能够有效降低CO2水合物相平衡点,温度越高,生成压力降低幅度越大,在最优用量为300 mg/kg下降幅可达27.7%。水合反应体系的压力越低,CTAB促进CO2水合物生成的诱导时间降低越大,促进效果越明显。该研究对于提高水合物生成速率具有一定的意义。  相似文献   

4.
为了研究液化条件对多孔介质中CO2水合物生成过程的影响机制及其规律,在初始压力为3.9、4.2、4.5、4.8和5.1 MPa,温度为273.5、274.5和275.5 K条件下研究粒径为700μm的石英砂介质中CO2水合物的生成过程。结果表明:在相同条件下,随着初始压力的增加,多孔介质中CO2水合物的生成速率逐渐增大;当压力低于液化压力时,随着初始压力的增加,CO2水合物的生成速率逐渐增大,且温度越高,水合物生成速率增加的趋势越明显;当CO2气体压力达到液化压力时,随着初始压力的不断升高,CO2水合物的生成速率明显增大;多孔介质中CO2水合物的最大生成速率达到了9.297×10-3 mol·s-1。研究结果进一步表明:液化可有效强化多孔介质中CO2水合物的生成过程,提高CO2水合物的生成速率。  相似文献   

5.
研制了一台能够连续制备蓄冷用CO2水合物的压缩式循环实验装置,并在该装置上研究了充注压力对水合物的预冷时间、生成质量、水合比例和潜热蓄冷量的影响。实验结果表明水合物在CO2气泡上升过程中生成,在气液界面处堆积。高的充注压力有着更理想的蓄冷特性,当充注压力为4.2 MPa时,预冷时间为8 min、水合物生成质量为8.44 kg、水合比例为75.1%、水合物潜热蓄冷量为4.22 MJ。充注压力为3.8 MPa及以上时,水合物生成量大,水合物阻碍釜内各部分的传热,使釜内中层、下层的温差较大。水合物生成过程后期,水合放热量减少,液体CO2在反应釜内的蒸发吸热效应使得釜内温度继续降低,一直到低于0℃,充注压力越高,此现象越明显。  相似文献   

6.
通过可视化水合物反应装置和影像设备,研究了注入液态CO2分解CH4水合物同时原位生成气体水合物并保持整块水合物结构稳定的完整过程,验证了水合物分解和生成同时进行的第二类原位置换过程的可行性. 通过控制压力实现在CO2?CH4混合水合物四相区(水合物?水?液相?气相)的CH4置换过程,得到富CH4气体产物. 通过分析气相色谱和测定产气量得到CH4产气特性和CO2对CH4水合物的置换率. 结果表明,低压有利于获得较优的置换效果,4.5 MPa下的置换过程较5 MPa时产气量提高14.6%,甲烷水合物置换率提高13.7%.  相似文献   

7.
二氧化碳置换开采天然气水合物研究   总被引:1,自引:0,他引:1  
颜克凤  李小森  陈朝阳  李刚  张郁 《现代化工》2012,32(8):42-47,49
天然气水合物(NGH)是存储于深海沉积物和冻土区域的新型洁净能源,注入CO2到NGH储藏置换开采天然气是经济和环保的新型NGH开采方法。CO2置换NGH研究从热力学和动力学证实都是可行的,置换反应自发进行,受扩散控制、NGH储藏环境、气体组分、注入CO2相态等因素影响。从实验和理论上分析置换原因、置换微观过程和置换的相态变化,阐述影响置换速率和置换效率的因素,提出置换安全性设计,为我国温室气体捕集、存储和NGH开采提供基础数据和理论支持。  相似文献   

8.
喷雾反应器中二氧化碳水合物的生长实验研究   总被引:1,自引:0,他引:1  
在喷雾反应器中进行了CO2水合物生成实验,观察了CO2水合物的生长过程,以结晶过饱和度作为生长驱动力研究了CO2水合物的生长特性. 结果表明,CO2水合物的生成量随生长驱动力增加而增加;反应温度越低,CO2水合物的生长量越大. CO2水合物生长速率为0.531~9.53 mmol/s,与静态反应装置中一致,表明喷雾反应器促进CO2水合物快速生长的作用有待进一步提高. CO2水合物储气率较低,为14~24 m3/m3,主要原因是生长驱动力偏小,水合反应不完全.  相似文献   

9.
CO2置换天然气水合物中的CH4是一种非常有前途的天然气水合物开采方法,该法兼具能源安全开采和温室气体地层封存的双重优势。首先综述了多孔介质中CO2-CH4水合物置换的研究进展,分析了制约CO2置换法开采天然气水合物商业应用的关键瓶颈问题,即置换过程存在的反应周期长、速率慢和效率低等问题。针对此问题,主要详述了强化CO2-CH4水合物置换的强化方法研究进展,包括注入不同的CO2相态、小分子及混合气体的强化、结合传统开采法的联合强化以及其他强化方法的作用机理,讨论了各种强化方法尚待完善和改进的地方。最后提出了多孔介质中CO2-CH4水合物置换强化方法目前研究的不足和未来的研究方向。  相似文献   

10.
CO2置换开采天然气水合物研究进展   总被引:15,自引:0,他引:15  
介绍了近年来CO2置换开采天然气水合物技术的研究进展;论述了CO2与天然气水合物中CH4置换反应在热力学上的可能性;认为正确理解置换反应机理、探索新的反应技术并提高反应速率是置换开采技术走向产业化的关键。  相似文献   

11.
Methane and carbon dioxide hydrates are one of the possible forms in which these gases exist in natural coal (for more detailed discussion see Refs [1,2]). In this work, the decomposition of carbon dioxide hydrate in five samples of natural coal differing from each other in metamorphism degree was investigated experimentally. Carbon dioxide hydrate dispersed in coals was synthesized from water adsorbed in these coals. During a linear temperature rise in an autoclave with the coal + hydrate sample the hydrate decomposition manifests itself as a step of increase in gas pressure, accompanied by a decrease/stabilization of the temperature of coal sample. The dependencies of the amount of hydrate formed on initial coal humidity and on gas pressure during hydrate formation were studied. It was demonstrated that each coal sample is characterized by its own humidity threshold below which hydrate formation in natural coal is impossible. With an increase in gas pressure, the amount of water transformed into hydrate increases. For the studied coal samples, the decomposition of carbon dioxide hydrates proceeds within a definite temperature and pressure range, and this range is close to the curve of phase equilibrium for bulk hydrate.  相似文献   

12.
1 m3 of methane hydrate can be decomposed into a maximum of 216 m3 of methane gas under standard conditions. If these characteristics of hydrates are utilized in the opposite sense, natural gas can be fixed into water in the form of a hydrate solid. Therefore, the use of hydrates is considered to be a great way to transport and store natural gas in large quantities. However, when methane hydrate is formed artificially, the amount of gas that is consumed is relatively low, due to the slow reaction rate between water and methane gas. Therefore, for practical purposes in the application, the present investigation focuses on increasing the rate of formation of the hydrate and the amount of gas consumed by adding multi-walled carbon nanotubes (MWCNTs) to pure water. The results show that when 0.004 wt% of multi-walled carbon nanotubes was added to pure water, the amount of gas consumed was about 300% higher than that in pure water and the hydrate formation time decreased at a low subcooling temperature.  相似文献   

13.
Methane hydrates are studied extensively as a prospective medium for storing and transporting natural gas due to their inherent advantages, including high volumetric energy storage density, being environmentally benign and extremely safe method compared to conventional compression and liquefaction methods. Enhanced formation kinetics of methane hydrates has been reported in hollow silica due to the increased gas/liquid contact surface area available for efficient conversion of water to hydrates. This work elucidates the mechanism of methane hydrate formation in light weight hollow silica. Hollow silica-to-water ratio was varied and its effect on the methane hydrate formation/dissociation morphology was observed. There exists a critical hollow silica-to-water ratio (1 : 6) beyond which the hydrates preferentially crystallize on the top of the bed by drawing water from the interstitial pores, whereas below this ratio the hydrate formation occurs within the bed between inter-particular spaces of hollow silica. Due to the very low bulk density, a small fraction of hollow silica was observed to be displaced from the bed during the hydrate formation above the critical hollow silica to water ratio.  相似文献   

14.
水合物技术是实现天然气储存、气体分离、海水淡化和二氧化碳捕集等的潜在可行途径之一,水合物技术为了降低生产成本同时又保持系统流动性,通常选择冰粉或冰浆等形式使生成反应在冰点附近进行;自然界的天然气水合物多数赋存于天然的多孔介质内,随着全球气温升高,甲烷水合物在临界条件附近的敏感性会导致储层的稳定性下降及潜在的甲烷大量释放,尤其是受气候变化影响较大的冻土带天然气水合物,其储层温度一般也处于冰点附近。本工作研究了硅砂(0.1~0.5 mm)中甲烷水合物在近冰点的形成过程与动力学特征,分别在273.75, 273.85和273.95 K小温差下研究了压力、温度、反应速率和甲烷吸收量变化,分析并计算了硅砂孔隙中水合物、水相和气相的最终体积饱和度。温度与反应速率的变化表明,水合物生成过程呈现出明显的三个阶段,在不同的阶段,温度和反应速率表现出独特的变化特征如峰值、持续时间等,同时对环境温度的敏感性非常强,温度升高后甲烷水合物生长速率及其在孔隙中的饱和度均有所降低,低温下水合物生长点晚及对应诱导期持续更长。  相似文献   

15.
青藏高原冻土区储存着大量的天然气水合物资源,CO2置换开采冻土区的天然气水合物可实现天然气水合物的安全开采和温室气体CO2的地层封存。冰点以下多孔介质中气体水合物的生成动力学,是冻土区天然气水合物置换开采研究领域的难点和热点问题。本文全面综述了冰点以下多孔介质中气体水合物的生成动力学研究进展,讨论了不同体系冰点以下多孔介质中气体水合物的形成机理及其生成特性;详述了冰生成水合物机理及其冰粉/多孔介质体系中气体水合物的生成特性,分析了冰点以下多孔介质中气体水合物生成动力学研究尚待完善和改进的地方。最后本文指出冰点以下多孔介质中水合物的生成过程是由传热、传质等多种因素所控制,揭示不同过程的主导因素及其影响规律是今后研究的重点方向。目前对冰点以下多孔介质中水合物的生成特性及机理的认识尚未成熟,仍需深入研究。  相似文献   

16.
祁连山木里冻土区是第一个发现天然气水合物的中纬度高山冻土区,与国外发现的冻土区天然气水合物相比,祁连山木里冻土区天然气水合物具有埋深浅、冻土层薄、重烃气体组分高等特征。气体碳氢同位素分析显示,区域内气体来源主要以油型气为主,并在局部伴有煤型气。分析了木里冻土区天然气水合物形成的主要影响因素,冻土层特征和气体组分对冻土区天然气水合物形成的影响较大,富含重烃等气体组分更有利于该地区天然气水合物的成藏,而纯甲烷气体在该地区不易形成天然气水合物。天然气水合物储集层段主要以粉砂岩、油页岩、泥岩和细砂岩为主,并且泥岩和油页岩占90%以上,岩石裂缝较发育,以裂隙型天然气水合物为主要赋存类型。初步认为木里冻土区天然气水合物为下部热解气在断层等构造通道作用下运移而形成的一种重烃气体组分热解气-低温冷冻-地层型为主的动态成藏。  相似文献   

17.
基于不同状态方程预测气体水合物相平衡条件   总被引:4,自引:1,他引:3       下载免费PDF全文
气相逸度的计算结果会直接影响气体水合物相平衡条件的预测精度。基于Chen-Guo模型,选取RK、SRK、PR以及PT四种状态方程计算逸度,分别对甲烷、乙烷以及二氧化碳三种不同气体水合物在不同温度范围内的相平衡条件进行计算。结果表明:纯水条件下,RK方程最适合预测甲烷水合物相平衡条件,而PR方程更适合预测乙烷及二氧化碳水合物相平衡条件;对于冰中,SRK方程适合预测甲烷水合物的相平衡条件,PR方程适合预测乙烷水合物的,而RK方程更适合二氧化碳水合物的;对于甲烷水合物,低于218.2 K的预测是导致模型预测精度偏低的原因;对于乙烷水合物,需要提高低于230.2 K的预测精度;对二氧化碳水合物而言,提高对低于270.7 K的预测可以进一步提高模型预测精度。  相似文献   

18.
毛港涛  李治平  王凯  丁垚 《化工进展》2022,41(10):5363-5372
二氧化碳水合物封存技术已成为目前碳封存研究的热点。该技术中对于二氧化碳水合物的生成分解特征及其影响因素的研究是当前的重点和难点。本文设计了高压全透明双反应釜实验平台,以高纯度二氧化碳和去离子水作为研究对象,在17℃、7MPa的初始温压条件下,进行了二氧化碳水合物的初次和二次生成分解实验,并设置对照组对搅拌的影响进行了研究,而后与甲烷在相同条件下的实验进行对比。实验结果表明,搅拌会促进二氧化碳水合物的生成,在400r/min的转速条件下,缩短诱导时间可达40%,增大压降速率可达15%,形成更多且更致密厚实的水合物,并延缓了分解;多次生成可以减少水合物的诱导时间,但对于水合物生成的总量几乎没有影响。与甲烷水合物相比,二氧化碳水合物生成的量大且更难以分解,实验结果有利于二氧化碳的海洋水合物封存技术的开发应用。  相似文献   

19.
A mathematical model of formation of carbon dioxide gas hydrate upon injection of warm carbon dioxide into a natural stratum saturated with methane and methane hydrate has been presented. The case when methane hydrate decomposes into gas and water on two frontal boundaries and the subsequent formation of carbon dioxide hydrate from carbon dioxide and water has been discussed. The regions where this mode is implemented depending on stratum permeability have been studied based on the pressure–temperature plane of the gas being injected into the stratum.  相似文献   

20.
In contrast to the structural studies of laboratory-grown gas hydrate, this study has been performed on naturally grown clathrate hydrates from the sea floor. The PXRD pattern of natural gas hydrate shows that the sample had a structure I hydrate. The13C NMR spectrum was obtained for the natural gas hydrate sample in order to identify the cage occupancy of guest molecules and determine the hydration number. The NMR spectrum reveal that the natural gas hydrates used in this study contain only methane with no noticeable amount of other hydrocarbons. The existence of two peaks at different chemical shifts indicates that methane molecules are encapsulated in both large and small cages. In addition, Raman spectroscopic analysis is also carried out to identify natural hydrates and compared with the NMR results. Investigating the composition and structure of natural gas hydrates is essential for applying natural gas hydrates as a novel energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号