首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
介质阻挡放电等离子体反应器降解盐酸四环素   总被引:1,自引:0,他引:1       下载免费PDF全文
王保伟  王超  徐艳  彭叶平  姚淑美 《化工学报》2018,69(4):1687-1694
采用介质阻挡放电等离子体反应器降解盐酸四环素(TC),研究了输入功率、放电间距、气体流量、初始浓度等参数对盐酸四环素降解效果的影响,结果表明当输入功率为1.3 W,放电间距为2.5 mm,气体流量为150 ml·min-1,初始浓度为100 mg·L-1时降解效果最好,放电处理30 min盐酸四环素的降解率达到92%。动力学研究表明盐酸四环素的降解过程符合拟二级动力学方程。检测了降解过程中生成的中间产物,提出了盐酸四环素的降解路径与机理。  相似文献   

2.
介质阻挡放电等离子体反应器降解盐酸四环素   总被引:1,自引:0,他引:1  
采用介质阻挡放电等离子体反应器降解盐酸四环素(TC),研究了输入功率、放电间距、气体流量、初始浓度等参数对盐酸四环素降解效果的影响,结果表明当输入功率为1.3W,放电间距为2.5 mm,气体流量为150ml·min~(-1),初始浓度为100 mg·L~(-1)时降解效果最好,放电处理30 min盐酸四环素的降解率达到92%。动力学研究表明盐酸四环素的降解过程符合拟二级动力学方程。检测了降解过程中生成的中间产物,提出了盐酸四环素的降解路径与机理。  相似文献   

3.
抗生素属于难降解物质,普通的物理化学方法不能有效去除。利用介质阻挡放电等离子体(DBD)降解红霉素(ETM),考察ETM初始质量浓度、放电功率、液体流速、空气流量对降解率的影响以及降解过程中TOC的变化。结果表明:放电功率为80 W、初始p H为8、液体流速为50 L/h,空气流量为60 L/h时,处理0.5 mg/L ETM溶液60 min后COD去除率为63.99%,60 min后TOC变化趋于平稳。  相似文献   

4.
采用介质阻挡放电等离子体/微曝气技术协同处理苯酚废水,考察放电电压、放电时间、溶液初始浓度及曝气量对苯酚处理效果的影响。研究结果表明:苯酚降解率随放电时间增加、苯酚初始浓度减小而提高;曝气量为150 m L/min时,苯酚降解率为51.8%。采用介质阻挡放电等离子体/微曝气协同工艺处理苯酚废水,与单独使用介质阻挡放电等离子体工艺相比,苯酚降解率提高了15%~20.4%。  相似文献   

5.
本实验以苯酚为目标污染物,采用自制的气液两相流介质阻挡反应器对苯酚进行处理,研究了放电电压、气体流量、苯酚溶液初始浓度和初始pH对处理效果的影响,通过分析能量密度和降解动力学等因素,对反应条件进行了优化。结果表明,苯酚的去除率随放电电压、气体流量和溶液初始pH的增大而提高,随溶液初始浓度的增大而降低。在放电电压为60 kV、气体流量为60 mL/min、苯酚溶液初始浓度为100 mg/L、初始pH=10.0的条件下处理60min后,介质阻挡放电等离子体对苯酚的去除率可达60.15%,能量密度为2 404.79 J/L。  相似文献   

6.
介质阻挡放电低温等离子体降解甲硫醚   总被引:1,自引:1,他引:1  
在线-筒式反应器中,应用介质阻挡放电低温等离子体对甲硫醚的降解进行实验研究.采用BPFN型窄脉冲高压电源供电,考察了重复频率、峰值电压、初始浓度、气体流量等单因素对去除率的影响.结果表明,介质阻挡放电能够有效地去除甲硫醚废气.甲硫醚去除率随着重复频率的增加而上升,但能量利用率却降低,本实验中采用重复频率为100 Hz较合适.当气体流量为1000 mL·min-1、初始浓度为906 mg·m-3时,甲硫醚去除率可达100%,此时能量利用率为0.864 mg·kJ-1.当甲硫醚初始浓度为525 mg·L-1,气体流量由1000 mL·min-1增加至2000 mL·min-1时,甲硫醚去除率由100%降低至85.7%,但是能量利用率却由0.706 mg·kJ-1升高至1.210 mg·kJ-1.  相似文献   

7.
本文采用介质阻挡放电等离子体技术对模拟C.I.活性黄145废水进行降解实验,考察了峰值电压、放电频率、气体流量、作用时间等因素对该染料废水色度、COD等处理效果的影响,并初步探讨C.I.活性黄145降解的降解机理。结果表明,介质阻挡放电可有效去除废水色度(去除率95%),COD去除率虽不高(去除率30%~40%),但生化可行性有一定提高(B/C由0.04上升到0.32)。通过降解机理的探讨表明,介质阻挡放电可将染料大分子降解为小分子的酸。  相似文献   

8.
采用介质阻挡放电对模拟废气中萘的降解进行了研究,深入分析了放电特性和萘的降解特性。研究结果表明:介质阻挡放电过程产生了90 ns脉宽的脉冲电流。放电电压的增加提高了能量密度,从而促进了萘的降解。在7 k V的放电电压下,能量密度达到了236.4 J·L-1,此时萘的降解效率为94.1%。而随着放电电压的增加,萘的降解产物COx的选择率却有所下降。在相同的能量密度下,低放电频率、窄放电气隙有助于萘的降解。介质阻挡放电过程中仅产生6μL·L-1左右的NOx,而生成了500μL·L-1以上的O3。另外,萘的降解过程还产生了萘醌、脂肪族化合物和短链烃等副产物,这表明氧自由基在萘的降解过程中起到了重要的作用。  相似文献   

9.
针对工业烟气中低浓度有机物难以去除,提出采用高吸附能力β分子筛为吸附剂,展开吸附储存和低温等离子体放电原位矿化处理含萘模拟气体。双极性脉冲电源用来驱动介质阻挡放电装置产生等离子体,探究气体流量、功率、温度和储存时间对萘矿化程度的影响。结果表明:气体体积流量为0.25 L·min-1时,放电时间更短;高功率、低温度可增加萘的矿化速率;储存量对碳平衡影响显著,最高可达97.65%。该过程具有反应器体积小、萘矿化率高、臭氧残余量低的优点。  相似文献   

10.
研究一种双杆式介质阻挡放电在不同条件下对酸性红73的降解效果,考察了能量密度、初始电导率、初始pH、初始质量浓度和放置时间等因素对染料降解率的影响,并对反应中生成的活性粒子(H2O2和O3)进行了检测。降解实验前后的紫外-可见吸收光谱图表明介质阻挡放电能够破坏酸性红73分子中的偶氮双键和萘环等。实验结果表明:能量密度的增加可以提高酸性红73降解率,当能量密度为265.8kJ/L时,降解率为70.0%,能量效率最高可达2.84mg/(kW·h)。酸性红73的初始质量浓度的增加可以提高反应的能量效率。放电过程中产生的过氧化氢与处理时间呈正相关增长,并可持续存在一段时间进一步引起染料褪色,臭氧则随着时间的增长先增大后减小。  相似文献   

11.
为探索介质阻挡放电低温等离子体降解甲醛的反应规律,利用Chemkin软件的Plasma-PFR模型,编制反应机理文件,进行化学反应动力学模拟。研究了甲醛初始浓度、含氧量、水含量、气体流速反应条件对甲醛降解率影响。通过模拟结果和实验结果的对比分析,论证了Plasma-PFR模型模拟介质阻挡放电低温等离子体降解甲醛的可行性。  相似文献   

12.
余芳  陈元涛  张炜  赫文芳  王雲生  刘晨 《化工进展》2016,35(12):4076-4081
为进一步提高介质阻挡放电等离子体(DBD)降解亚甲基蓝(MB)的效率,研究了采用介质阻挡放电等离子体和光催化剂协同技术。实验采用溶胶-凝胶法制备TiO2-HNTs复合光催化材料,并利用XRD、FTIR、TGA方法对催化剂进行表征分析。考察了该材料的光催化性能,以及它与介质阻挡放电的联合降解过程中操作因素的影响,并对反应进行动力学研究。研究结果表明,TiO2-HNTs复合光催化材料与介质阻挡放电产生协同作用,并能有效地提高MB的去除率,处理60min后,协同体系对MB的降解率为85.37%,MB的降解过程符合表观一级反应动力学方程。MB的去除率与MB的初始浓度,TiO2-HNTs的投加量、煅烧温度、放电功率和通气量有关。当MB的初始浓度为100mg/L、TiO2-HNTs的投加量为70mg/L、煅烧温度为300℃、放电功率为200W、通气量为200mL/min时,MB的去除效果较好。  相似文献   

13.
采用多电极介质阻挡放电低温等离子体处理印染废水进行中试研究。考察容积为15 L的反应器在不同的输入电压、脉冲频率、溶液初始浓度、气体流速等条件下对甲基橙溶液的降解效果。结果表明,降解效果随输入功率电压的增加而先增加后降低,且在100 V时降解效果最佳,50 mg/L的甲基橙溶液20 min的脱色效率为98.08%,200 mg/L的甲基橙溶液60 min的脱色效率为99.12%;对50 mg/L的甲基橙溶液20 min COD的降解率为29%,连续降解60 min COD的降解率达57%。同时,气体流速也是工业应用中需要重视的影响因素之一。  相似文献   

14.
介质阻挡放电等离子体处理酸性大红GR废水   总被引:1,自引:0,他引:1  
采用一种以待处理废水为接地极的介质阻挡放电反应器,对模拟酸性大红GR废水进行降解试验,考察了峰值电压、放电频率、放电间距、作用时间及溶液初始浓度等因素对酸性大红GR降解效果的影响,并对降解机理进行了初步探讨。试验结果表明,在废水初始质量浓度为30 mg/L,pH=2,放电间距6 mm,放电电压8 kV,放电频率10 kHz的条件下,放电处理20 min后脱色率达到76.4%;向反应体系中加入Fe2+有利于提高染料废水的脱色效果,溶液中Fe2+浓度为0.48 mmol/L时,放电处理20 min后脱色率达到92.1%。废水脱色率随处理时间的延长而提高,COD的变化则呈现上升-下降-上升-下降的趋势。酸性大红GR废水经放电处理后的中间产物主要为甲酸、乙酸、苯、对苯二酚、1-萘醌、6-萘酚、邻苯二甲酸(酐)、对羟基苯甲酸等,表明酸性大红GR分子上的C-N键断裂后,苯环在.OH的攻击下开环。降解产物中存在少量的羟基苯胺和对硝基苯胺,表明有少部分酸性大红GR的降解是通过N=N的断裂开始的。  相似文献   

15.
聚合物三采技术在提高原油产量的同时也产生了大量难以处理的含聚丙烯酰胺的废水,因此需要开发有效降低污水中聚丙烯酰胺浓度的技术。本文通过介质阻挡低温等离子体反应器的合理设计,实现非稳态气液界面介质阻挡连续放电技术对高盐含聚丙烯酰胺废水的有效处理。考察了放电功率、液面间距、溶液pH等对降解效果的影响,结果表明,当输入功率为66 W、放电极与液面间距为0. 4 cm,溶液pH=4. 0,NaCl浓度为1. 93 g/L时,在6 min内可使聚丙烯酰胺的降解率达到90%,该技术可用于实际含聚丙烯酰胺废水的处理。  相似文献   

16.
考察了CO_2进气流量、放电功率、放电频率对介质阻挡放电(DBD)裂解CO_2反应的影响。结果表明,CO_2转化率随着CO_2进气流量的增加而减小,随着放电功率的增加而增加,随着放电频率的增大略微减小,但变化幅度不大。DBD转化CO_2能量效率几乎不随CO_2进气流量和放电功率改变,仅随放电频率有所改变。  相似文献   

17.
为进一步提高对亚甲基蓝(MB)的降解效果,提出了介质阻挡放电等离子体协同吸附方法,并利用XRD、FTIR方法对吸附剂进行表征分析。研究结果表明,处理120 min后,协同体系对MB的降解率为96.36%。当MB的初始质量浓度为50 mg/L、HNTs的投加量为70 mg/L、放电功率为150 W、pH为6.7、通气量为200 m L/min时,MB的去除效果较好。  相似文献   

18.
李超 《化工进展》2020,39(5):1964-1973
介质阻挡放电技术在处理低浓度挥发性有机物(VOCs)过程中具有反应快速、工艺简单及适应范围广等优点而受到广泛关注。本文从介质阻挡放电单独使用和介质阻挡放电协同催化两方面进行了概括总结。首先,简述了介质阻挡放电处理VOCs所用的驱动电源和等离子体发生器的研究现状及气体性质对VOCs降解性能的影响;其次,介绍了介质阻挡放电协同催化的两种方式(内置式和后置式)及各自情况下采用不同催化剂强化VOCs去除性能、提高能量效率、抑制副产物生成的过程机理;最后,分析了介质阻挡放电技术处理低浓度VOCs过程中存在的关键问题,并提出了未来的重要研究方向为:等离子体催化体系中VOCs的界面反应机理;催化剂的抗积碳性能的提高;适用于多组分VOCs的高效催化剂的开发。  相似文献   

19.
臭气是低浓度和多成分的气体物质,人的嗅觉非常灵敏,能感知极低的恶臭污染物浓度。恶臭物质的嗅阈值极低,通常在不到10-6级的低浓度时,臭气使人感到不愉快和厌恶,并对人体健康产生危害。将含硫化氢的臭气使用低温等离子体技术协同不同基体的二氧化钛催化剂对其进行降解研究。采用自制线-管式双介质阻挡放电反应器并协同两种不同基体的二氧化钛催化剂(TiO_(2)/UV光解铝基网和TiO_(2)/UV光解聚氨酯泡沫网),并采用一段式、两段式协同系统对模拟硫化氢气体进行降解实验研究。对自制反应器的能量密度进行测定,考察不同输入电压、气体流量和初始浓度对硫化氢去除效率的影响,对系统产生的臭氧进行分析。结果表明,反应过程中,放电产生的臭氧对硫化氢分解起一定作用;随着反应器输入电压增大,模拟硫化氢气体的初始浓度和流量较小,硫化氢气体降解率增大;相比于单独使用低温等离子体技术,协同催化剂的不同反应系统中硫化氢降解率得到明显提升。  相似文献   

20.
采用低温等离子体协同填料床吸附强化氧化降解高浓度甲醇废水。研究表明单独采用4A分子筛、陶粒、陶瓷Rasching环和γ-Al2O3不同填料均可吸附废水中甲醇,但较易达到吸附饱和,其中4A分子筛的吸附速率和平衡吸附量优于其他3种填料。单独采用多针板式介质阻挡放电低温等离子体技术,化学需氧量(COD)降解率随放电时间和放电电压增加而增大。采用低温等离子体协同填料降解甲醇废水优于单一净化过程,协同初始阶段以吸附为主,随放电时间延长以等离子体降解反应为主,液相和填料吸附的甲醇同时被等离子体活性基团逐渐氧化降解,最大降解率达90%以上。单独填料吸附过程符合准二级吸附动力学方程。低温等离子体对COD降解反应级数随污染物浓度降低和反应时间延长逐渐增大。低温等离子体协同填料吸附对降解过程相互影响,等离子体活性基团对液相和固相吸附的污染物都有一定的活化作用。填料的吸附作用和等离子体氧化作用会不断改变液相中的污染物浓度与·OH浓度比值,降解过程宏观反应动力学级数随着液相中甲醇浓度降低而逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号