首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
采用静态与水下声发射法测试了CL-20含量及其粒度级配对NEPE推进剂燃速与压强指数的影响;采用DSC与TG-IR联用研究了CL-20对NEPE推进剂热分解行为的影响。结果表明,随着CL-20质量分数由42%增至50%,推进剂燃速与压强指数上升,燃烧效率提高,表明CL-20氧化能力高于GAP/硝酸酯含能黏合剂体系;随着CL-20/HMX、CL-20/Al质量比增高,推进剂燃速上升,燃烧效率上升;CL-20对推进剂燃速和压强指数的贡献高于HMX;随着CL-20/AP质量比增高,CL-20/AP混合体系分解产物氧化能力降低,燃烧反应速率降低,燃速降低;CL-20粒度级配对NEPE推进剂燃烧行为影响显著,当CL-20的粒径(d50)在5~50μm时,随着细粒度CL-20含量增高,推进剂燃速与燃速压强指数下降;当体系中存在超细粒度CL-20(d50=500nm)时,推进剂燃速与燃速压强指数随着超细粒度CL-20含量的增加而有所增加,4种粒度CL-20对NEPE推进剂燃速的贡献顺序为:粗粒度>中粒度>超细粒度>细粒度。  相似文献   

2.
设计了以双基(DB)推进剂、高氯酸铵(AP)为主要组分的燃烧剂,并加入金属可燃剂B、Mg、Al来调整燃烧剂的燃烧性能,采用全自动量热仪、数码摄像机、热电偶和TG-DSC测试了燃烧剂的燃烧热、燃速、火焰温度和热性能.结果表明,金属粉的加入可以提高燃烧剂的燃烧热、燃速和火焰温度,并可以改变其火焰结构;对于长距离、高沸点物质的引燃,3种金属粉中B粉的效果最佳,DB/AP/B的火焰温度可达1 070℃,火焰长度达25cm,其燃烧过程也更稳定,而DB/AP/Mg和DB/AP/Al在燃烧过程中产生大量的火星;AP和金属粉对DB推进剂的热分解没有影响.  相似文献   

3.
Mechanically‐activated nanocomposites (MANCs) of nano‐aluminum (nAl)/X (X=Cu, Ni, Zn, Mg, and graphite) were used as replacements for reference nAl powder and as catalytic ingredients in polyurethane (PU) propellants. The effects of their use on combustion heat, burning rate, and thermal decomposition were investigated. It was found that MANCs have catalytic effects and the modified propellants have enhanced the released heat, burning rate, and thermal decomposition properties. MANCs‐based propellants have improved the processing and the mechanical properties with acceptable safety aspects. They can be used for catalytic applications in solid propellants to improve their energetic, burning rate, and thermal decomposition characteristics.  相似文献   

4.
The burning rate of AP/HTPB composite propellant increases with increasing AP content and with decreasing AP size. In addition, the burning rate can be enhanced with the addition of Fe2O3. The burning characteristics and thermal decomposition behavior of AP/HTPB composite propellant using coarse and fine AP particles with and without Fe2O3 at various AP contents were investigated to obtain an exhaustive set of data. As the AP content decreased, the burning rate decreased and the propellants containing less than a certain AP content self‐quenched or did not ignite. The self‐quenched combustion began at both lower and higher pressures. The lower limit of AP content to burn the propellant with coarse AP was lower than that with fine AP. The lower limit of AP content to burn was decreased by the addition of Fe2O3. The thermal decomposition behavior of propellants prepared with 20–80 % AP was investigated. The decrease in the peak temperature of the exothermic decomposition suggested an increased burning rate. However, a quantitative relationship between the thermochemical behavior and the burning characteristics, such as the burning rate and the lower limit of AP content to burn, could not be determined.  相似文献   

5.
The combustion behavior of grading aluminum powders containing superfine aluminum powder (SAl) in NEPE propellant has been studied by several kinds of experimental techniques. The results indicate that the usage of grading aluminum powders containing SAl can effectively improve the combustion characteristics of NEPE propellant and the combustion efficiency of aluminum. The reason is that SAl has the different combustion and thermochemical properties from those of generally powdered aluminum (Al). SAl is inclined to burn in a single step, hence greatly increasing the heat released during the thermal decomposition of NEPE propellant.  相似文献   

6.
Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/HMX/AP/Al based solid propellant processed by slurry cast route were carried out using varying percentages of HMX and AP. It was observed that propellant compositions containing only AP and Al loaded (total solids 75 %) in NG plasticized PE‐PCP binder produce comparatively lower pressure exponent (η) values similar to AP‐Al filled HTPB based composite propellants. However, energetic propellants containing high level of nitramine (40–60 %) produce high pressure exponent (0.8–0.9) values in the same pressure range. Incorporation of fine particle size AP (ca. 6 μm) and change in its concentration in the propellant composition reduces η value marginally and influences the burning rate. However, such compositions have higher friction sensitivity.  相似文献   

7.
Nanophase materials and nanocomposites, characterized by an ultra fine grain size (less than 100 nm) have attracted wide spread interest in recent years by virtue of their unusual mechanical, electrical, optical, magnetic, and energetic properties. Studies have shown that the thermal behavior of nano‐scaled materials is quite different from micron‐sized powders. Nanosized metallic and explosive powders have been used as solid propellant and explosive mixtures to increase efficiency. At the same time recent studies reveal that the presence of nanosized metals in propellants does not necessary translate into an increased burning rate and burning temperature. The reasons of this effect are far from being clear. This paper presents a new approach to the production of nanocomposites of some energetic materials – ammonium nitrite, cyclotrimethylene trinitramine (RDX), and aluminum – by the vacuum co‐deposition technique. The thermal behavior of the synthesized nanopowder and nanocomposites is investigated. A substantial difference in burning rate of RDX nanopowder has been found in comparison to micron‐sized material. Experimental results allow investigating the effects of nanosized materials on the combustion characteristics.  相似文献   

8.
Different propellant compositions were prepared by incorporating nano‐sized cobalt oxide from 0.25 % to 1 % in HTPB/AP/Al‐based composite propellant formulations with 86 % solid loading. The effects on viscosity build‐up, thermal, mechanical and ballistic properties were studied. The findings revealed that by increasing the percentage of nano‐Co3O4 in the composition, the end of mix viscosity, the modulus and the tensile strength increased, whereas the elongation decreased accordingly. The thermal property data envisaged a reduction in the decomposition temperature of ammonium perchlorate (AP) as well as formulations based on AP. The ballistic property data revealed an enhanced burning rate from 6.11 mm s−1 (reference composition) to 8.99 mm s−1 at 6.86 MPa and a marginal increase in pressure exponent from 0.35 (reference composition) to 0.42 with 1 % nano‐cobalt oxide.  相似文献   

9.
为改善高氯酸铵(AP)的性能,从而改善复合固体推进剂的燃烧性能,采用AP辅助的金属有机骨架结构(MOF)热分解法合成纳米ZnO立方体催化剂(n-ZnO/cube);采用XRD、FESEM、TEM等对其形貌进行了表征,分析了其比表面积和孔径分布;采用TG-DTA分析了其对AP热分解的影响;将其加入到HTPE推进剂中,测试了其对推进剂工艺性能、安全性能、力学性能及燃烧性能的影响。结果表明,n-ZnO/cube催化剂具有大的比表面积(70.5m2/g)和大量的孔道结构,将AP热分解的高温分解峰从413℃降至279℃,放热量从584J/g增至1520J/g,分解活化能从151.1kJ/mol降至65.3kJ/mol;将质量分数2%的n-ZnO/cube加入到HTPE推进剂中,推进剂的燃速(20℃,6.86MPa)从12.01mm/s提高到16.16mm/s,工艺性能、安全性能、力学性能、燃速压强指数(0.42,20℃,3~16MPa)、燃速温度敏感系数(2.02×10-3-1,-55~70℃,6.86MPa)均未受到明显影响,表明纳米ZnO立方体结构对AP热分解表现出良好的催化性能,是HTPE推进剂的一种具有潜力的燃烧调节剂。  相似文献   

10.
高氯酸铵复合物研究概况   总被引:3,自引:0,他引:3  
对近年来高氯酸铵(AP)与推进剂燃烧剂、燃烧催化剂、高导热材料碳纳米管(CNTs)组成的复合物的热分解性能进行了总结,介绍了燃烧剂、催化剂和CNTs在含AP推进剂中的应用效果。结合当前含AP推进剂研究现状,认为AP复合处理是改善推进剂燃烧性能、能量性能和工艺性能的新型方法和有效途径,AP复合物具有良好的工程应用前景。  相似文献   

11.
The burning rate pressure relationship is one of the important criteria in the selection of the propellant for particular applications. The pressure exponent (η) plays a significant role in the internal ballistics of rocket motors. Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/AP/Al‐ and NG/PE‐PCP/HMX/AP/Al‐based solid rocket propellants processed by a conventional slurry cast route were carried out. The objective of present study was to understand the effectiveness of various ballistic modifiers viz. iron oxide, copper chromite, lead/copper oxides, and lead salts in combination with carbon black as a catalyst on the burning rate and pressure exponent of these high‐energy propellants. A 7–9 % increase in the burning rates and almost no effect in pressure exponent values of propellant compositions without nitramine were observed. However, in case of nitramine‐based propellants as compared to propellant compositions without nitramines, slight increases of the burning rates were observed. By incorporation of ballistic modifiers, the pressure exponents can be lowered. The changes in the calorimetric values of the formulations by addition of the catalysts were also studied.  相似文献   

12.
含有复合催化剂的Al/HMX/CMDB推进剂样品,在放置3~4周后,爆热、燃速下降,压强指数升高。为找到具体原因,对推进剂试样进行了燃烧性能、真空安定性及DSC热分解实验,并对实验结果进行了系统分析。结果表明:复合催化剂中超细的SnO2具有较强的催化活性,催化推进剂在常温下进行热分解,最终导致推进剂安定性、爆热、燃速下降,压强指数升高。推进剂性能的恶化,严重影响其正常使用。  相似文献   

13.
用DSC技术考察了7种含黑索今酮(Keto-RDX)火药的热分解特性,并对其中3种进行了密闭爆发器测试。将DSC数据对动力学方程进行拟合以求得动力学参数。从密闭爆发器测试结果转换得到了该3种火药的燃速-压力曲线,并对其进行了转折性分析。结果表明,向火药中加入Keto-RDX可提高火药燃速并降低其热分解表观活化能。含Keto-RDX的火药其燃速压力指数在低压区较在高压区为高。在火药中同时存在有Keto-RDX和RDX对火药热分解和燃烧的稳定性是不利的。仅由Keto-RDX与双基粘结剂组成的火药,其燃速压力指数较由RDX与双基粘结剂组成的火药为低。  相似文献   

14.
镁铝中能贫氧推进剂燃烧性能初探   总被引:3,自引:0,他引:3  
系统地研究了镁铝中能贫氧推进剂的燃烧特性,并对该类推进剂的配方进行了初步的优化设计。研究发现,高氯酸铵含量和镁铝比对贫氧推进剂燃烧特性有显著影响。增加AP含量和金属添加剂中镁粉含量均有助于提高推进剂的燃速和拓宽其低压可燃极限。另外,采用超细组分或添加燃速催化剂也是提高推进剂燃速和拓宽低压可燃极限的重要途径。  相似文献   

15.
The thermal decomposition behavior and combustion characteristics of mixtures of ammonium dinitramide (ADN) with additives were studied. Micrometer‐sized particles of Al, Fe2O3, TiO2, NiO, Cu(OH)NO3, copper, CuO, and nanometer‐sized particles of aluminum (Alex) and CuO (nano‐CuO) were employed. The thermal decomposition was measured by TG‐DTA and DSC. The copper compounds and NiO lowered the onset temperature of ADN decomposition. The heat value of ADN with Alex was larger than that of pure ADN in closed conditions. The burning rates and temperature of the pure ADN and ADN/additives mixtures were measured. CuO and NiO enhance the burning rate, particularly at pressures lower than 1 MPa, because of the catalyzed decomposition in the condensed phase; the other additives lower the burning rate. This negative effect on the burning rate is explained based on the surface temperature measurements by a physicochemical mechanism, which involves a chemical reaction, a phase change of the ammonium nitrate, and the blown‐off droplets of the condensed phase.  相似文献   

16.
储氢合金/AP/HTPB推进剂的热分解性能   总被引:2,自引:0,他引:2  
采用TG-DTG、DSC以及动力学分析方法研究了储氢合金/AP/HTPB推进剂的热分解性能。结果表明,相对于Al/AP/HTPB推进剂,储氢合金/AP/HTPB推进剂的热分解温度降低,放热量提高;A20/AP/HTPB推进剂的凝聚相反应程度提高2.44%,第二、三温区的热分解活化能(Kissinger法)分别降低4.06%和22.63%;A30/AP/HTPB推进剂的凝聚相反应程度提高10.61%,第二、三温区的热分解活化能(Kissinger法)分别降低30.89%和38.87%。储氢合金对AP/HTPB推进剂的热分解有催化作用,并且该催化作用随着储氢合金中Mg0.45Ni0.05B0.5Hx含量的增加而增强。  相似文献   

17.
火药热分解特性与燃烧稳定性间相关性的分析   总被引:1,自引:1,他引:0  
火药热分解过程的复杂性与其燃烧稳定性之间,存在有某种统计性的增函数关系。火药热分解特性对其燃烧特性的影响,是通过燃烧过程中亚表面热分解表观活化能的变化来实现的,当环境温度和压力较低时,亚表面的热分解特性,与常规条件下该火药的热分析结果相近。对于热分解过程较为复杂的火药,随着环境压力和温度的升高,其亚表面的分期机理和表观分解活化能将发生改变,亚表面分解速率随压力的变化规律也要发生变化,这就导致了燃烧过程的不稳定性,而对于那些热分解过程较为简单的火药,则不会出现这种情况,此外,本文还提出,火药中某些组分的爆燃是导致一些火药燃速压力指数较高的原因。  相似文献   

18.
An experimental study on the effects of an applied external electric field on the combustion behavior of solid fuels and solid propellants has been conducted. In an opposed flow burning configuration, application of an electric field was shown to extinguish a paraffin fuel and gaseous oxygen flame over a broad range of operating conditions. When subjected to the electric field, burning paraffin fuel strands were found to extinguish at various axial locations relative to the exit of the oxidizer gas jet. Extinguishment location was found to be a function of field strength as well as electrode surface area, while changes in polarity did not significantly alter the results. In addition, the combustion behaviors of two composite solid rocket propellants were studied while subjected to an external electric field. Both propellants were based on HTPB/AP combinations, with one propellant containing aluminum and the other being non‐aluminized. Application of an electric field to the composite solid rocket propellant strands demonstrated decreases in propellant burning rate under all operating conditions for both propellants including changes in polarity. The flame structure of the aluminized propellant was examined closely as the luminosity, flame length, and flame width varied significantly with field strength and burning location of the strand relative to the electrodes.  相似文献   

19.
A high-pressure combustor and a metal/steam reactor are used to simulate the two-stage combustion of hydro-reactive propellants used for a water ramjet. Raw metal powders added to the propellants are the aluminum power, magnesium powder, 50/50 aluminum-magnesium alloy (AM), and ball-milled 50/50 aluminum-magnesium alloy (b-AM), which are characterized by using scanning electron microscopy (SEM), x-ray diffraction (XRD), and simultaneous thermogravimetric analysis (TGA). The efficiencies of the Al reaction in the raw metal in heated steam and in the propellants during the two-stage combustion are calculated. The results indicate that both Mg and Al in the alloys, whether b-AM or AM, can react completely in air when heated up to 950°C. The XRD patterns for the combustion products of the AM and b-AM alloys in heated steam contain magnesium oxide MgO, spinel Al2MgO4, and Al diffraction peaks. The Al reaction efficiencies of the AM and b-AM alloy powders in heated steam are much higher than that of the Al powders. The hydroxyl-terminated polybutadiene (HTPB)-ammonium perchlorate (AP)-(b-AM)-Mg and HTPB-AP-AM-Mg propellant systems exhibit good performance in terms of the Al reaction efficiency, which are better than that of the HTPB-AP-Al-Mg and HTPB-AP-Al systems.  相似文献   

20.
The novel grain‐binding high burning rate propellant (NGHP) is prepared via a solventless extrusion process of binder and spherical propellant grains. Compared with the traditional grain‐binding porous propellants, NGHP is compact and has no interior micropores. During the combustion of NGHP, there appear honeycomb‐like burning layers, which increase the burning surface and the burning rate of the propellant. The combustion of NGHP is a limited convective combustion process and apt to achieve stable state. The larger the difference between the burning rate of the binder and that of the spherical granular propellants exists, the higher burning rate NGHP has. The smaller the mass ratio of the binder to the spherical granular propellants is, the higher the burning rate of NGHP is. It shows that the addition of 3 wt.‐% composite catalyst (the mixture of lead/copper complex and copper/chrome oxides at a mass ratio of 1 : 1) into NGHP can enhance the burning rate from 48.78 mm⋅s−1 in the absence of catalyst to 56.66 mm⋅s−1 at P=9.81 MPa and decrease the pressure exponent from 0.686 to 0.576 in the pressure range from 9.81 to 19.62 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号