首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了优化制备烟梗基活性炭,经Minitab软件设计2~3全因素正交实验.比表面积作为活性炭制备的评价指标。通过微孔材料吸附仪和SEM表征活性炭;采用间歇吸附实验探索苯酚在活性炭上吸附特性和机理。由结果可知影响活性炭制备的最主要因素为ZnCl_2质量分数,且活性炭制备最佳条件为:活化温度500℃,ZnCl_2质量分数为30%,活化时间0.2 h。最佳条件下制备的活性炭比表面积为1 036 m~2/g,介孔占比68.9%。拟二级能更好地描述活性炭对苯酚的动力学吸附,Freundlich和Langmuir 2种模型均能很好描述活性炭对苯酚的等温吸附。制备活性炭3个主因素间的交互作用既不利于活性炭制备,同时也增加耗能,活性炭的孔结构一定程度上决定其吸附速率和能力,丰富的孔结构更利于吸附。  相似文献   

2.
基于干拌法制备聚氨酯(PU)改性沥青混合料,研究了PU预聚体掺量、稀释剂掺量、扩链交联剂掺量及拌和温度对混合料性能的影响。结果表明,利用干拌法制备的PU改性沥青混合料具有良好的性能;当PU预聚体掺量为5%时,混合料的马歇尔稳定度达到最大值,稀释剂在该条件下的最佳掺量为5%;扩链交联剂掺量超过3%后,对混合料性能提升不明显;拌和温度超过160℃后,PU的结构会发生破坏,导致混合料的强度降低。  相似文献   

3.
以油茶果壳为原料,以氯化锌为活化剂,在减压条件下热裂解制备活性炭。探讨氯化锌溶液的质量分数、体系压力、活化温度、活化时间对活性炭吸附性能的影响;通过低温氮气吸-脱附表征了样品的比表面积及孔结构,采用红外光谱仪分析了样品的表面官能团。得到制备该活性炭的最佳工艺条件为:氯化锌溶液的质量分数为60%、料液比1∶3(即每毫克固体物料加入3 m L液体物料,下同)、体系压力为0.05 MPa、活化温度为450℃、活化时间为1 h,在该条件下得到的活性炭碘吸附值为1 120 mg/g,亚甲基蓝吸附值为373.16 mg/g,比表面积为2 023.15 m2/g,总孔体积为2.34 cm3/g,平均孔径为4.63 nm。减压条件下制备的活性炭具有优良的吸附性能。  相似文献   

4.
以油茶果壳为原料,以氯化锌为活化剂,在减压条件下热裂解制备活性炭。探讨氯化锌溶液的质量分数、体系压力、活化温度、活化时间对活性炭吸附性能的影响;通过低温氮气吸-脱附表征了样品的比表面积及孔结构,采用红外光谱仪分析了样品的表面官能团。得到制备该活性炭的最佳工艺条件为:氯化锌溶液的质量分数为60%、料液比1∶3(即每毫克固体物料加入3 m L液体物料,下同)、体系压力为0.05 MPa、活化温度为450℃、活化时间为1 h,在该条件下得到的活性炭碘吸附值为1 120 mg/g,亚甲基蓝吸附值为373.16 mg/g,比表面积为2 023.15 m2/g,总孔体积为2.34 cm3/g,平均孔径为4.63 nm。减压条件下制备的活性炭具有优良的吸附性能。  相似文献   

5.
以不同的水性聚氨酯(PU)及环氧树脂(EP)为主体,制得一系列胶黏剂胶液,并制备成胶膜,通过分析胶膜的力学性能及硬度优选出胶黏剂主体;采用胶黏剂胶液、助剂、纳米二氧化硅(SiO2)粒子与芳纶1414通过热压法制备芳纶复合材料,研究了助剂含量、纳米SiO2含量和上胶量对复合材料防刺性能的影响。结果表明:由相对分子质量为2 000的聚己二酸丁二醇酯二醇合成的PU作为胶黏剂主体,制备的复合材料具有良好的综合性能,其抵御功(ηp10)可达0.264 (mN·m3)/g;复合材料的ηp10随胶黏剂中助剂含量的增加呈现先增大后降低的趋势,随着上胶量的增加而增大;以PU为胶黏剂主体、助剂质量分数为1.8%、上胶量为27%时,复合材料的ηp10达0.288 (mN·m3)/g,兼具良好的防刺性能和轻量化;在胶黏剂中添加适量的纳米SiO2可进一步提高复合材料的防刺性能,当胶黏剂中纳米SiO2质量分数为6%时,...  相似文献   

6.
焦剑  吕盼盼  亓璐  淡少敏  汪雷 《化学工程》2015,43(2):25-29,78
采用D2000为模板剂,TEOS为硅源,在中性的条件下合成了具有较大孔径的蠕虫型介孔SiO2(MSU-J),并采用四乙烯五胺(TEPA)通过物理浸渍的方法制备不同质量分数的TEPA改性的MSU-J,得到具有高吸附量的CO2吸附剂。利用FT-IR,N2吸附/脱附及TG对所制备的样品进行表征。CO2的吸附试验是在不同氨基质量分数(20%,30%,50%,70%)以及不同温度下测试。吸附实验表明,浸渍TEPA后,吸附剂由单纯的物理吸附转变为以氨基为活性中心的化学吸附,且随着TEPA浸渍含量的增加吸附量先增加后降低,当TEPA负载量(质量分数)为50%时,吸附量可达到164.3 mg/g。温度对吸附剂的吸附性能也有一定的影响,最佳的吸附温度为25℃,这与吸附机理有关,随着温度的升高,反应向解吸附方向移动。循环性试验表明,所制备的吸附剂具有良好的循环性能,材料重复使用6次,对CO2吸附性能只有少量的下降,这可能是由于TEPA的挥发或者部分分解引起的。  相似文献   

7.
《无机盐工业》2015,47(6):60
合成了主要成分为粉煤灰和活性炭的新型吸附材料,并通过单因素试验考察了吸附材料处理含DMAC(N, N-二甲基乙酰胺)废水的效果。吸附材料最佳制备条件:粉煤灰与活性炭质量比为3∶1,硅酸钠加入量为25%(硅酸钠占粉煤灰、活性炭、硅酸钠总质量的质量分数),煅烧温度为800 ℃。吸附材料处理含N, N-二甲基乙酰胺废水最佳条件:pH为3,吸附剂投加量为25 g/L,吸附时间为40 min,吸附温度为30 ℃,在此条件下CODCr去除率为75.92 %。  相似文献   

8.
椰壳活性炭的制备及吸附酸性大红GR染料动力学   总被引:1,自引:0,他引:1  
采用椰壳制备活性炭吸附处理酸性大红GR染料废水。通过单因素和响应面实验确定了椰壳活性炭制备的最优工艺参数:液固比为3.1 mL/g,磷酸质量分数为66%,活化时间为2.5 h,活化温度为602℃,此条件下制备的活性炭对酸性大红GR染料的吸附容量为1 682 mg/g。以Design-expert7.0软件建立的工艺参数模型与实验结果有较好的吻合度。SEM显示,制备的活性炭具有均匀的纳米级微孔结构。制备的活性炭对酸性大红GR染料的吸附行为符合准二级动力学方程。  相似文献   

9.
制备了KOH改性活性炭吸附剂并用于脱除低浓度羰基硫(COS),利用氮气物理吸附、X射线光电子能谱、CO_2程序升温脱附、傅里叶变换红外光谱对吸附剂进行表征。考察了浸渍液质量分数及吸附条件对改性活性炭脱除COS性能的影响,并进行了再生性能测试。实验结果表明,浸渍液质量分数为10%时吸附剂的穿透吸附量最大,为40. 64 mg/g;在一定范围内,吸附效果与原料气流速成反比,与吸附温度成正比; COS在吸附剂表面反应主要生成了硫酸盐和硫单质;经过4次再生后,10OH/AC吸附剂的穿透吸附量仍达34. 32 mg/g,表明10OH/AC吸附剂具备一定工业应用潜力。  相似文献   

10.
磷酸活化烟草杆制备中孔活性炭的研究   总被引:10,自引:0,他引:10  
以烟草杆为原料,以磷酸为活化剂,采用一步炭化法制备了活性炭。采用正交实验研究了磷酸质量分数、浸渍时间、炭化温度及保温时间对活性炭得率和吸附性能的影响,在最佳工艺条件(磷酸质量分数30%,浸渍时间48 h,炭化温度750℃,保温时间20 min)下,所制备的活性炭其碘吸附值为889.36 mg/g,亚甲基蓝吸附值为21.5 mL/(0.1 g),得率为36.90%。同时测定了该活性炭的液氮吸附等温线,并通过BET、H K方程、D A方程和密度函数理论(DFT)表征了活性炭的孔结构。结果表明,该活性炭为中孔型,BET比表面积为892 m2/g,总孔体积为0.467 8 mL/g,微孔占总孔体积的37.06%,中孔占62.85%,大孔占0.07%。最后采用电子探针和透射电镜分析了活性炭的微观结构,其结构与氮吸附测定的结果较为一致。  相似文献   

11.
利用花生壳制备活性炭及其性能的测定   总被引:3,自引:0,他引:3  
采用氯化锌法,以花生壳为原料制备高性能的活性炭,并对其实验影响条件进行分析研究.通过正交实验得出最优制备条件:花生壳与氯化锌溶液料液质量比为1∶2.5,氯化锌溶液质量分数60%,活化温度600 ℃,活化时间90 min.并对此条件下制备的活性炭的性能进行了测定,其表观密度0.4146 g/mL,水分含量9.3067%,铁含量0.002%,亚甲基蓝吸附值12.5 mL/(0.1 g),碘的吸附值1 269.08 mg/g.  相似文献   

12.
油茶果壳活性炭的制备及其对苯酚的吸附   总被引:2,自引:0,他引:2  
余少英 《应用化工》2010,39(6):823-826
以油茶果壳为原料,60%的磷酸溶液为活化剂制备了油茶果壳活性炭,探讨了料液比、活化温度与时间对油茶果壳活性炭吸附苯酚性能的影响。结果表明,在活化温度为600℃,活化时间为90 min,料液比(g∶g)为1∶3时,制备的油茶果壳活性炭对苯酚的吸附效果最好。油茶果壳活性炭对苯酚吸附的最佳条件为:在30℃,0.1 g油茶果壳活性炭对100 mL的500 mg/L苯酚吸附5 h后,吸附量达到了218.0 mg/g。  相似文献   

13.
采用原位聚合法,分别以氧化石墨烯(GO)和多层石墨烯为填料,制备了石墨烯/聚氨酯(PU)复合热界面材料。对比了两种石墨烯对聚氨酯弹性材料的补强作用,研究了GO用量对GO/PU复合材料力学性能、导热性能和热稳定性的影响。结果表明:在相同用量下,氧化石墨烯对聚氨酯弹性材料的补强作用好于多层石墨烯; GO质量分数为1. 5%时,复合材料的力学性能最佳,导热系数和热失重5%时的热分解温度达到最大。  相似文献   

14.
以聚己内酯二醇(PCL)、甲苯二异氰酸酯(TDI)和二甲硫基甲苯二胺(DMTDA)为原料,采用预聚法制备了聚氨酯(PU)弹性体,考察了维生素A醋酸酯(RA)质量分数在0.5%~3%、紫外光老化时间在0~240 h时间段内,不同RA用量和光老化时间对聚氨酯材料耐老化性能的影响。结果表明,含RA的PU试样经紫外光老化后,其拉伸强度和断裂伸长率降低的幅度小于纯聚氨酯的,含RA的PU试样耐溶剂性能优于纯PU,加入RA可延缓聚氨酯材料助色基团生成时间,对聚氨酯材料的抗紫外效果有所改善。综合各项指标,RA质量分数为1%时PU抗紫外性能表现较优。  相似文献   

15.
以碘吸附值、亚甲基蓝吸附值及活性炭得率为考察指标,选取对糠醛渣活性炭性质影响较大的浸渍比、磷酸质量分数、活化温度、保温时间4个因素进行L16(45)正交试验对磷酸活化法制备糠醛渣活性炭的工艺条件进行优化。由正交试验结果得到磷酸活化的最佳工艺条件为:磷酸质量分数60%,浸渍比2.5:1,活化温度550 ℃,保温1.5 h,此条件下制得的活性炭样品的碘吸附值为839.6 mg/g,亚甲基蓝吸附值为260.3 mg/g,得率为46.8%,比表面积为830.20 m2/g,孔容积为0.502 cm3/g,孔径集中在0.8~2.5 nm,具有丰富的中孔和微孔。  相似文献   

16.
熊道陵  许光辉  张团结  陈金洲  陈超 《化工进展》2015,34(12):4280-4284
以油茶壳醇浸取后残渣为原料,以磷酸活化法制备活性炭,考察了浸渍比、磷酸质量分数和活化温度等对活性炭吸附性能及其得率的影响;活性炭的吸附性能由碘吸附值、亚甲基蓝吸附值表征。结果表明,在酸/炭浸渍比为3:1、磷酸质量分数70%、活化温度500℃时,活性炭的吸附性能最佳,其碘、亚甲基蓝吸附值和得率分别为1043.29mg/g、148.5mg/g和38.77%。采用物理吸附仪在77K下测定其N2吸附脱附等温线,利用BET法和BJH法计算比表面积和孔径分布,其比表面积为1626.45m2/g,平均孔径为4.7nm,总孔容为1.94cm3/g。同时采用FTIR和XRD分析了活性炭的表面官能团和微观结构。  相似文献   

17.
采用异氟尔酮二异氰酸酯(IPDI)、聚醚二元醇、丙烯酸羟丙酯(HPA)合成了不饱和聚氨酯树脂,加以活性稀释剂、光敏剂安息香乙醚配制成胶液,经光固化制得胶膜。分析了HPA、活性稀释剂用量对胶膜拉伸强度、断裂伸长率等性能的影响,发现当胶液中HPA质量分数为9%、活性稀释剂质量分数为56%时胶膜的综合力学性能较好。对胶膜进行1?008 h紫外辐照老化试验,测得拉伸强度保持率为70%,断裂伸长率保持率为78%。将最优配方下的胶液灌注在透明陶瓷、无机玻璃、有机玻璃之间,经光固化复合成防弹透明结构材料。对防弹透明结构材料进行了60 d阳光曝晒试验,测得透光率保持率为98.6%,并进行了7.62 mm枪弹射击试验,测得弹丸未穿透防弹透明结构材料、背板无飞溅物产生。  相似文献   

18.
以玉米秸秆为原料, 研究烘焙预处理对磷酸法活性炭的制备及性能影响。研究结果表明: 烘焙预处理使玉米秸秆碳元素含量和固定碳含量增加而挥发分含量降低, 增加热解焦炭质量, 且烘焙温度影响强于烘焙时间。烘焙处理使玉米秸秆活性炭比表面积先增加后减小, 总孔容和中孔率减小, 而微孔率显著增加。烘焙预处理有助于提高活性炭吸附性能, 当100 g粒径为154~450 μm玉米秸秆颗粒经烘焙预处理, 预处理条件为烘焙温度240 ℃、烘焙时间60 min时, 预处理后的玉米秸秆含C 51.32%, 固定碳27.64%, 灰分4.72%。采用磷酸活化法将预处理后的玉米秸秆制备成活性炭, 制备条件为浸渍比1∶4(玉米秸秆与55%磷酸溶液的质量比), 浸渍温度140 ℃, 浸渍时间90 min, 活化温度400 ℃, 活化时间60 min, 此条件下制备的玉米秸秆活性炭比表面积达1 317.05 m2/g, 碘吸附值、亚甲基蓝吸附值和焦糖脱色率分别为876 mg/g、210 mg/g和100%。  相似文献   

19.
以异氰酸酯封端的聚氨酯预聚体(PU)与环氧树脂(EP)发生反应,制备了聚氨酯接枝改性环氧灌封材料。FTIR表明异氰酸酯封端的聚氨酯预聚体与环氧树脂中的仲羟基完全反应,同时考察了活性稀释剂用量对树脂黏度的影响及固化过程中温度的变化。聚氨酯预聚体的加入,使材料的冲击强度和弯曲强度都有所升高,当聚氨酯质量分数为5%时,材料的弯曲强度提高了30%,而冲击强度提高了近200%,玻璃化转变温度没有降低,SEM分析了其增韧机理。  相似文献   

20.
通过浸渍法制备煤基活性炭Fe系吸附剂(Fe/AC),并采用扫描电镜、N_2吸附、元素分析和Boehm滴定法表征其结构及表面官能团。以批处理方式调变吸附条件(时间、初始质量浓度和温度)研究吸附剂对苯胺和吡啶的吸附行为,并分别采用Langmuir,Freundlich和Temkin模型拟合实验数据,同时用准一级、准二级和Elovich动力学方程分析吸附动力学行为,研究吸附剂吸附苯胺和吡啶的热力学行为。结果表明:当吸附100 mg/L的苯胺和吡啶时,硝酸铁处理对吸附剂的吸附量无显著影响,而当吸附2 500 mg/L的苯胺和吡啶时,活性炭(AC),Fe3/AC(载铁活性炭,铁负载量为3%)和Fe5/AC(载铁活性炭,铁负载量为5%)的苯胺吸附量略有差别,分别为167 mg/g,166 mg/g和164 mg/g,AC,Fe3/AC和Fe5/AC的吡啶吸附量则分别为122 mg/g,102 mg/g和100 mg/g,说明硝酸铁处理可以降低吸附剂对苯胺和吡啶吸附量(吸附剂对吡啶吸附量降低得更为显著),这是由酸性含氧官能团的增加和吸附质亲水性叠加作用所致;吸附剂的吸附量随着温度升高而略下降;负载Fe具有催化氧化苯胺活性;Freundlich模型较好描述了AC和载铁活性炭(Fe/AC)对苯胺及吡啶吸附过程;准二级方程较好描述了Fe/AC对吡啶和低质量浓度苯胺吸附过程,Evolich动力学方程适用于高质量浓度苯胺吸附;吸附苯胺和吡啶是自发的和放热的。载铁活性炭适用于处理低质量浓度苯胺和吡啶废水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号