首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platinum is the most investigated catalyst for the electrochemical oxidation of small organic molecules. This metal presents high overpotentials for the oxidation of organic compounds and the poisoning of active sites by strongly adsorbed intermediates, mainly CO, which decrease the efficiency of a direct alcohol fuel cell (DAFC). Ethanol is an ideal fuel for these DAFC systems due to its high energy density, but one of the problems with the electro-oxidation of this fuel is the low yield for the total oxidation to CO2. The purpose of the work reported here was to study the influence of the composition of Pt-Rh/C catalysts on the CO2 yields. In addition, using the differential electrochemical mass spectrometry (DEMS) technique, it is shown that Pt-Rh/C catalysts enhance the total ethanol oxidation with respect to pure Pt/C by driving the reaction via the CO2 route. The faradaic current efficiency for the oxidation of ethanol to CO2 increased from 0.08 on pure Pt/C to 0.5 on the Pt47Rh53/C catalyst at 0.7 V vs. RHE. It was concluded that electronic effects play a key role in the mechanism of ethanol oxidation on Pt-Rh/C electrodes.  相似文献   

2.
Methanol adsorption and electro-oxidation on Pt-Rh alloys have been studied in aqueous 0.5 M H2SO4 for a broad range of alloy surface composition including the pure Pt and Rh metals. Adsorption results have been compared with equivalent data obtained for CO and CO2 adsorption on these alloys. Current densities of continuous methanol oxidation on Pt, Rh and a Pt-Rh alloy with optimum surface molar fraction of Rh have been measured.Although on the pure Pt and Rh metals the methanol adsorption products exhibit similar energetic stability, as judged from the peak potential of electro-desorption, on the Pt-Rh alloys, there is a lowering of the stability. Similar behavior is observed for the CO and CO2 adsorption products, however, the lowering for methanol is much less than for CO and CO2. In the case of methanol, the maximum lowering is obtained for a surface molar fraction of Rh equal to ca. 0.65 and it is the same alloy surface composition that results in maximum lowering of the stability of the CO2 adsorption products, but not of the CO adsorption products (optimal fraction of Rh equal ca. 0.10). Structural similarity of the methanol and the CO2 adsorption products finds support in similar values of the electrons-per-site parameter obtained.Pt-Rh alloys show insufficient electrode potential improvement over Pt in continuous methanol electro-oxidation due to the susceptibility of Rh to strong poisoning by the methanol adsorption products, which switches off the bi-functional mechanism of methanol electro-oxidation on this alloy. The presence of Rh in the alloy with Pt additionally strongly lowers the methanol electro-oxidation turnover rate of the Pt component.  相似文献   

3.
In this paper, we combined FTIR spectroscopy and COad stripping voltammetry to investigate COad adsorption and electrooxidation on Pt-Ru/C nanoparticles. The Pt:Ru elemental composition and the metal loading were determined by ICP-AES. The X-ray diffraction patterns of the Pt-Ru/C indicated formation of a Pt-Ru (fcc) alloy. HREM images revealed an increase in the fraction of agglomerated Pt-Ru/C particles with increasing the metal loading and showed that agglomerated Pt-Ru/C nanoparticles present structural defects such as twins or grain boundaries. In addition, isolated Pt-Ru/C nanoparticles have similar mean particle size (ca. 2.5 nm) and particle size distributions whatever the metal loading. Therefore, we could determine precisely the effect of particle agglomeration on the COad vibrational properties and electrooxidation kinetics. FTIR measurements revealed a main COad stretching band at ca. , which we ascribed to a-top COad on Pt domains electronically modified by the presence of Ru. As the metal loading increased, the position of this band was blue shifted by ca. 5 cm−1 and a shoulder around 2005 cm−1 developed, which was ascribed to a-top COad on Ru domains. The reason for this was suggested to be the increasing size of Ru domains on agglomerated Pt-Ru/C particles, which lifts dipole-dipole coupling and allows two vibrational features to be observed (COad/Ru, COad/Pt). This is evidence that FTIR spectroscopy can be used to probe small chemical fluctuations of the Pt-Ru/C surface. Finally, we comment on the COad electrooxidation kinetics. We observed that COad was converted more easily into CO2 as the metal loading, i.e. the fraction of agglomerated Pt-Ru/C nanoparticles, increased.  相似文献   

4.
Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt3Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm−3 H2SO4 solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO2 were found, indicating that the cleavage of the CC bond in the ethanol substrate occurred during the oxidation process. At 90 °C, the Pt89Sn11/C and Pt68Sn9Ir23/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC).  相似文献   

5.
M.H. Shao 《Electrochimica acta》2005,50(12):2415-2422
The electrooxidation of ethanol was investigated on a Pt thin film electrode in a HClO4 solution using surface enhanced infrared absorption spectroscopy (SEIRAS) with the attenuated total reflection (ATR) technique. The spectra indicate that during this reaction acetate and CO adsorbates are formed. The intensity of symmetric OCO stretching band of adsorbed acetate correlates well with voltammetry in the potential range between −0.1 and 0.85 V. The CO stretching band for adsorbed acetaldehyde and/or acetyl also was observed; these compounds are the reaction intermediates whose oxidation generates COad and acetic acid. We also explored the oxidation behavior of adsorbed residues. The oxidation of acetaldehyde was studied for comparison.  相似文献   

6.
The fuel cell differential electrochemical mass spectrometry (FC‐DEMS) measurements were performed for studying the ethanol oxidation reaction (EOR), using alkaline membrane electrode assemblies (MEAs) made up of nanoparticle Pt catalyst and alkaline polymeric membranes. The obtained results indicate that in an alkaline medium, ethanol undergoes significantly more complete electro‐oxidation to CO2 than in an acidic MEA using the same Pt anode. The CO2 current efficiency (CCE) can be compared for acidic and alkaline MEA with similar electrochemical active area on the anode side. The CCE estimated, in case of alkaline MEA with Pt anode, is around 55% at 0.8 V/RHE, 60 °C and 0.1 M ethanol. In comparison, under similar conditions, acidic MEAs using the same anode catalyst show only 2% CCE. This might indicate that the C–C bond scission rates are much higher in alkaline media. However, the mechanism of ethanol oxidation in alkaline media is not exactly known. CO2 produced in electrochemical reaction forms soluble carbonates in the presence of aqueous alkaline electrolyte. This makes it difficult to study ethanol oxidation in alkaline media using FTIR or model DEMS systems. The alkaline polymer electrolyte membranes as used in this study for making alkaline MEAs provide an important opportunity to observe CO2 produced during EOR using FC‐DEMS system.  相似文献   

7.
Electrocatalytic activities of Pt/C, Pt-Ru/C, and Pt-Ni/C for the oxidation of ethylene glycol in a basic solution are evaluated by cyclic voltammetry and quasi-steady state polarization. Based on the results of Tafel slopes from quasi-steady state polarization, the catalytic activities for ethylene glycol oxidation are in the order of Pt-Ru/C > Pt-Ni/C > Pt/C. The analysis of intermediate products for ethylene glycol oxidation by higher performance liquid chromatograph (HPLC) demonstrates that the degree of ethylene glycol oxidation is dependent on catalysts. Pt-Ru/C shows the highest current densities for ethylene glycol oxidation, but shows lower fuel utilization. On the other hand, Pt-Ni/C shows higher ability to cleavage C–C bonds, but is suffered from catalyst poisoning. To improve the tolerance for catalyst poisoning, we construct a novel Pt-Ni-SnO2/C catalyst, compare its catalytic activities, and evaluate the intermediates. Pt-Ni-SnO2/C shows superior catalytic activities for ethylene glycol oxidation, resulting in the highest degree of complete electro-oxidation of ethylene glycol to CO2.  相似文献   

8.
Novel carbon supported Pt/SnOx/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, COad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnOx/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnOx/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 °C. On all Pt/SnOx/C catalysts, acetic acid and acetaldehyde represent dominant products, CO2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol−1), but are lower than on Pt/C (32 kJ mol−1). The somewhat better performance of the Pt/SnOx/C catalysts compared to alloyed PtSnx/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.  相似文献   

9.
M. Li  K. Sasaki  D. Su  P. Liu 《Electrochimica acta》2010,55(14):4331-9830
Ternary Pt-Rh-SnO2/C electrocatalysts with the atomic ratio Pt:Rh:Sn = 3:1:x, where x varies from 2 to 6, were synthesized using the modified polyol method followed by thermal treatment. Several techniques used to characterize these electrocatalysts showed they were composed of homogeneous PtRh alloy and SnO2, having all three constituents coexisting in single nanoparticles with the average particle size around 1.4 nm and a narrow size distribution. While all the electrocatalysts investigated exhibited high catalytic activity for ethanol oxidation, the most active one had the composition with the Pt:Rh:Sn = 3:1:4 atomic ratio. These ternary-electrocatalysts effectively split the C-C bond in ethanol at room temperature in acidic solutions, which is verified using the in situ IRRAS technique.  相似文献   

10.
Pt monolayers deposited on carbon-supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt–Ru and Pt–Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum.  相似文献   

11.
Electrooxidation of ethanol on a polycrystalline Pd disk electrode in alkaline media was studied by in situ Fourier transform infrared (FTIR) reflection spectroscopy. The emphasis was put on the quantitative determination of intermediates and products involved in the oxidation. It has revealed that most of ethanol was incompletely oxidized to acetate. The selectivity for ethanol oxidation to CO2 (existing as CO32− in alkaline media) was determined as low as 2.5% in the potential region where Pd electrode exhibited considerable electrocatalytic activity (−0.60 to 0.0 V vs. SCE). Nevertheless, the ability of Pd for breaking C-C bond in ethanol is still slightly better than that of Pt under the same conditions. Besides, a very weak band of adsorbed intermediate, bridge-bonded CO (COB) was identified on the Pd electrode for the first time, suggesting that CO2 and CO32− species may also be generated through CO pathway (i.e., indirect pathway).  相似文献   

12.
The oxidation of acetaldehyde on carbon supported Pt/Vulcan, PtRu/Vulcan and Pt3Sn/Vulcan nanoparticle catalysts and, for comparison, on polycrystalline Pt and on an unsupported PtRu0.2 catalyst, was investigated under continuous reaction and continuous electrolyte flow conditions, employing electrochemical and quantitative differential electrochemical mass spectroscopy (DEMS) measurements. Product distribution and the effects of reaction potential and reactant concentration were investigated by potentiodynamic and potentiostatic measurements. Reaction transients, following both the Faradaic current as well as the CO2 related mass spectrometric intensity, revealed a very small current efficiency for CO2 formation of a few percent for 0.1 m acetaldehyde bulk oxidation under steady-state conditions on all three catalysts, the dominant oxidation product being acetic acid. Pt alloy catalysts showed a higher activity than Pt/Vulcan at lower potential (0.51 V), but do not lead to a better selectivity for complete oxidation to CO2. C–C bond breaking is rate limiting for complete oxidation at potentials with significant oxidation rates for all three catalysts. The data agree with a parallel pathway reaction mechanism, with formation and subsequent oxidation of COad and CH x, ad species in the one pathway and partial oxidation to acetic acid in the other pathway, with the latter pathway being, by far, dominant under present reaction conditions.  相似文献   

13.
Catalytic wet air oxidation (CWAO) of stearic acid was carried out in a batch reactor over noble metals (Ru, Pd, Pt, Ir) catalysts supported on ceria. The influence of reaction conditions such as temperature, oxygen pressure and stearic acid concentration were investigated. The reaction occurs via a complex mechanism. The molecule of stearic acid can be oxidized by successive carboxy–decarboxylation (RnCOOH + O2 → Rn−1COOH +CO2) yielding essentially CO2 (route A). It may also be oxidized after CC bond rupture within the alkyl chain, which gives rise to significant amounts of acetic acid besides CO2 (route B). Pt/CeO2 is a very active catalyst in the conversion of stearic acid and extremely selective to carbon dioxide (route A), while the mechanism via CC bond splitting is much more marked on Ru/CeO2. The catalyst characterization indicates that both noble metal and CeO2 particles remain stable during the reaction.  相似文献   

14.
The CO oxidation over silica supported Pt-Rh alloys was investigated and compared with the reaction over silica supported Pt and Rh catalysts. The CO-O2 ratio was varied from CO-rich to CO-lean conditions. The activity expressed as turnover frequency changes gradually with increasing Pt bulk concentration: from Rh-like to Pt-like. The results can be understood on the basis of results obtained for Pt-Rh single crystal surfaces. Both the specific differences in properties of Pt and Rh and the surface composition determine the activity of the alloy catalysts.  相似文献   

15.
CO tolerance of H2-air single cell with phosphoric acid doped polybenzidazole (PA-PBI) membrane was studied in the temperature range 140-180 °C using either dry or humidified fuel. Fuel composition was varied from neat hydrogen to 67% (vol.) H2-33% CO mixtures. It was found that poisoning by CO of Pt/C and Pt-Ru/C hydrogen oxidation catalysts is mitigated by fuel humidification. Electrochemical hydrogen oxidation at Pt/C and Pt-Ru/C catalysts in the presence of up to 50% CO in dry or humidified H2-CO mixtures was studied in a cell driven mode at 180 °C. High CO tolerance of Pt/C and Pt-Ru/C catalysts in FC with PA-PBI membrane at 180 °C can be ascribed to combined action of two factors—reduced energy of CO adsorption at high temperature and removal of adsorbed CO from the catalyst surface by oxidation. Rate of electrochemical CO oxidation at Pt/C and Pt-Ru/C catalysts was measured in a cell driven mode in the temperature range 120-180 °C. Electrochemical CO oxidation might proceed via one of the reaction paths—direct electrochemical CO oxidation and water-gas shift reaction at the catalyst surface followed by electrochemical hydrogen oxidation stage. Steady state CO oxidation at Pt-Ru/C catalyst was demonstrated using CO-air single cell with Pt-Ru/C anode. At 180 °C maximum CO-air single cell power density was 17 mW cm−2 at cell voltage U = 0.18 V.  相似文献   

16.
Conventional electrochemical methods have been applied to study the oxidation of a possible alternative fuel for a direct oxidation fuel cell. The electrooxidation of dimethoxymethane (DMM) was investigated on the three low index planes, (1 0 0), (1 1 0) and (1 1 1) of platinum single crystals and compared with its oxidation on a platinum polycrystalline electrode. Among platinum electrodes, electroreactivity of DMM observed is Pt(1 1 1) > Pt(1 0 0) > Pt(1 1 0) ∼ Pt poly. Hydrogen adsorption is limited by the presence of DMM, except for Pt(1 1 1) plane. In situ IR experiments show the presence of bands of COads with all electrodes except Pt(1 1 1). This work shows that the mechanism of DMM electrooxidation is structure sensitive. A path takes place on Pt(1 0 0) and Pt(1 1 0) which is favourable to the formation of COads. Another path proceeds on Pt(1 1 1), where COads is not present and reaction does not occur at low potential. Results indicate that peak intensities are higher in perchloric acid than in sulphuric acid. So DMM adsorption is dependent on the specific adsorption of the anions. In situ IR reflectance spectroscopy identified some intermediates and reaction products of DMM adsorption and electrooxidation on Pt electrodes: COL (linearly bonded) and COB (bridge bonded), adsorbed CHO and CH3O species, methanol and CO2. The electrochemical and spectroelectrochemical experiments suggest a complex mechanism of DMM electrooxidation.  相似文献   

17.
This paper presents the study of ethanol electrooxidation on Pt(1 1 1) electrode modified by different coverage degrees of a submonolayer of osmium nanoislands, which were obtained by spontaneous deposition. The ethanol oxidation reaction was extensively studied by employing in situ FTIR. Collections of spectra of the ethanol adsorption and oxidation processes were acquired over a series of positive potential steps, in order to determine the intermediate species and the main products that are formed. It was shown that the increase in the catalytic activity of Pt(1 1 1) after osmium deposition for ethanol oxidation is greater than that observed on nonmodified Pt(1 1 1). It was also demonstrated that the mechanistic pathway for this reaction depends directly on the degree of osmium coverage. Thus, for low osmium coverage (θOs ≤ 0.28), the formation of CO as an intermediate is favored, and hence the full oxidation of adsorbed ethanol to CO2 is increased, additionally, the formation of acetaldehyde is also observed in low degrees of osmium coverage. For intermediate osmium coverage (0.28 < θOs ≤ 0.40), the oxidation of ethanol to acetaldehyde and then to acetic acid is favored, although on Pt(1 1 1) the formation of acetaldehyde is promoted. For higher degrees of osmium coverage (θOs > 0.51), the catalytic activity of the electrode for ethanol oxidation decreases. For an almost complete osmium layer (θOs = 0.92), obtained by electrodeposition at 50 mV, catalytic activity for ethanol oxidation shows the lowest value. In addition, the direct oxidation of ethanol to acetic acid at lower potentials is observed.  相似文献   

18.
Binary and ternary Pt-based catalysts were prepared by the Pechini–Adams modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by TEM and XRD. XRD showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/W and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm−3 H2SO4) and in the presence of ethanol. The results obtained at room temperature showed that the PtSnW/C catalyst display better catalytic activity for ethanol oxidation compared to PtW/C catalyst. The reaction products (acetaldehyde, acetic acid and carbon dioxide) were analyzed by HPLC and identified by in situ infrared reflectance spectroscopy. The latter technique also allowed identification of the intermediate and adsorbed species. The presence of linearly adsorbed CO and CO2 indicated that the cleavage of the C–C bond in the ethanol substrate occurred during the oxidation process. At 90 °C, the Pt85Sn8W7/C catalyst gave higher current and power performances as anode material in a direct ethanol fuel cell (DEFC).  相似文献   

19.
The carbon nanotube (CNT) synthesised by the template carbonisation of polypyrrole on alumina membrane has been used as the support for Pt-WO3, Pt-Ru, and Pt. These materials have been used as the electrodes for methanol oxidation in acid medium in comparison with E-TEK 20 wt% Pt and Pt-Ru on Vulcan XC72R carbon. The higher electrochemical surface of the carbon nanotube (as evaluated by cyclic voltammetry) has been effectively used to disperse the catalytic particles. The morphology of the supported and unsupported CNT has been characterised by scanning electron micrograph and high-resolution transmission electron micrograph. The particle size of Pt, Pt-Ru, and Pt-WO3 loaded CNT was found to be 1.2, 2, and 5 nm, respectively. The X-ray photoelectron spectra indicated that Pt and Ru are in the metallic state and W is in the +VI oxidation state. The electrochemical activity of the methanol oxidation electrode has been evaluated using cyclic voltammetry. The activity and stability (evaluated from chronoamperometric response) of the electrodes for methanol oxidation follows the order: GC/CNT-Pt-WO3-Nafion>GC/E-TEK 20% Pt-Ru/Vulcan Carbon-Nafion>GC/CNT-Pt-Nafion>GC/E-TEK 20% Pt/Vulcan carbon-Nafion>Bulk Pt. The amount of nitrogen in the CNT plays an important role as observed by the increase in activity and stability of methanol oxidation with N2 content, probably due to the hydrophilic nature of the CNT.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号