首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the increasing interest in alternative energy, there is a focus on bio-oil production from biomass because it is an abundant and renewable energy source. Among the various kinds of biomass conversion technologies, pyrolysis has been investigated widely to produce bio-oil. However, the direct use of bio-oil is difficult because of its poor quality due to the large amounts of oxygen-containing compounds, such as acids, ketones, and esters. Therefore, an additional suitable upgrading process for bio-oil is required. Hydrodeoxygenation (HDO) is considered effective for the deoxygenation of bio-oil. This paper reviews the recent progress in the catalytic HDO of bio-oil. In addition, the effects of the solvent and catalyst applied to the HDO of bio-oil are reviewed intensively together with a discussion of the deactivation behavior of the catalyst during HDO.  相似文献   

2.
生物质能源作为可再生能源的重要组成部分,其综合高效利用在能源替代与补充、保护生态环境等方面具有重要的战略意义。生物油是生物质通过热裂解技术获得的液体产物,具有能量密度较高、环境友好、可再生及可直接输送等优点,可替代传统化石燃料推广使用,解决日益严重的能源紧缺与环境污染等问题。生物质热解制油技术的开发与利用,已成为新世纪可持续能源研究领域的重要课题之一。总结了近年来生物质热解制油技术的主要研究进展,重点关注热解反应器、催化热解技术与生物油的提质利用方面的研究,介绍了碱金属、氧化物和分子筛3种生物质热解催化剂,以及乳化、催化加氢、催化裂解、催化酯化和重整制氢5种生物质提质方法,最后对生物质热解技术的现状及发展趋势进行了总结和概括。  相似文献   

3.
This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid(SCF)conditions.The precious metal catalysts Pd,Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs.This is reportedly due to their favourable catalytic activity during the process including hydrotreating,hydrocracking,and esterification,which leads to improvements in liquid yield,heating value,and pH of the upgraded bio-oil.Due to the costs associated with precious metal catalysts,some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol.On the other hand,SCFs have been effectively used to upgrade crude bio-oil without a catalyst.Supercritical methanol,ethanol,and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis,respectively.  相似文献   

4.
Biomass is considered as a renewable and alternative resource for the production of fuels and chemicals, since it is the only carbon and hydrogen containing resource that we can find in the world except for fossil resources, capable of being converted to hydrocarbons. The pyrolytic liquefaction of biomass is a promising way to convert biomass to useful products. This paper briefly surveys the present status of the direct catalytic pyrolysis for the liquefaction of biomass. The direct use of catalysts could decrease the pyrolysis temperature, increase the conversion of biomass and the yield of bio-oil, and change the distribution of the pyrolytic liquid products then improve the quality of the bio-oil obtained. The fact that biomass is in solid state present great challenges for its conversion and for the effective use of catalysts due to the bad heat transfer characteristics and bad mass transfer properties. These barriers appeal for the development of a new catalyst and new catalytic process as well as the integration of both. Process design and process intensification are of significant importance in the catalytic conversion of biomass.  相似文献   

5.
快速热解是生物质高效转化利用的重要方法之一,然而其目标产物生物油因含氧量高、组分复杂等不足而难以直接利用。通过在热解体系中引入碱土金属氧化物基催化剂,可以将热解产物中的氧元素以CO2和H2O等方式脱除,从而实现生物油品质的提升。总结了典型碱土金属氧化物基催化剂对生物质催化热解过程中发生的酮基化、羟醛缩合、开环和侧链断裂反应及机理,讨论了催化剂类型(CaO、MgO、基于碱土金属氧化物的分子筛和活性炭等)、生物质原料、温度、催化剂用量、停留时间、催化方式、催化剂失活等因素对生物油产率与品质的影响,并对生物质催化热解制备高品质生物油及其应用进行了展望。  相似文献   

6.
张君涛  刘健康  梁生荣  钟汉斌 《化工进展》2014,33(10):2644-2649
在简要介绍和比较热裂解、催化裂解、热裂解-催化改质和催化裂解-催化改质4种废塑料化学转化制燃料基本方法的基础上,综述了近年来国内外在废塑料裂解催化剂和废塑料裂解产物改质催化剂的研究进展,重点讨论了催化剂酸性、比表面积、孔径以及负载金属离子的类型等对废塑料催化裂解和催化改质反应性能的影响,并介绍了聚烯烃(包括聚乙烯和聚丙烯)废塑料和聚苯乙烯废塑料热裂解和催化裂解的反应机理。最后对废塑料化学转化制燃料技术的研究与开发提出了一些建议,指出采用催化裂解-催化改质组合技术是未来废塑料化学转化制燃料过程的发展趋势,其今后的研究重点将是开发具有较强酸性和有利于大分子扩散与传质性能孔道结构的分子筛催化剂。  相似文献   

7.
Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics.  相似文献   

8.
The rapid increase in energy demand, the extensive use of fossil fuels and the urgent need to reduce the carbon dioxide emissions have raised concerns in the transportation sector. Alternate renewable and sustainable sources have become the ultimate solution to overcome the expected depletion of fossil fuels.The conversion of lignocellulosic biomass to liquid(BtL) transportation fuels seems to be a promising path and presents advantages over first generation biofuels and fossil fuels. Therefore, development of BtL systems is critical to increase the potential of this resource in a sustainable and economic way.Conversion of lignocellulosic BtL transportation fuels, such as, gasoline, diesel and jet fuel can be accomplished through various thermochemical processes and processing routes. The major steps for the production of BtL fuels involve feedstock selection, physical pretreatment, production of bio-oil, upgrading of bio-oil to transportation fuels and recovery of value-added products. The present work is aiming to give a comprehensive review of the current process technologies following these major steps and the current scenarios of biomass to liquid facilities for the production of biofuels.  相似文献   

9.
生物质热解所得目标产物生物油因高含氧量、组分复杂等问题难以直接应用,通过使用适宜的催化剂升级热解蒸气可实现生物油的脱氧提质。本文基于前人研究,首先总结了生物质催化热解中金属氧化物和分子筛催化剂的结构特点、催化原理与催化效果。然后详细介绍了微介孔复合型、金属氧化物/ZSM-5复合型双级催化体系的构建原理、催化模式及其对于生物质催化热解产物分布规律产生的影响,并说明了双级催化体系的可行性与实用性;同时概述了影响生物质催化热解的其他因素,包括原料特性、工艺参数、操作模式等。最后针对目前双级催化热解研究与发展中存在的问题,对进行双级催化模式的比较研究、改进催化体系以降低生产成本、发掘双级催化剂的多种使用价值等方向提出了展望。  相似文献   

10.
Catalytic pyrolysis of biomass for biofuels production   总被引:3,自引:0,他引:3  
Fast pyrolysis bio-oils currently produced in demonstration and semi-commercial plants have potential as a fuel for stationary power production using boilers or turbines but they require significant modification to become an acceptable transportation fuel. Catalytic upgrading of pyrolysis vapors using zeolites is a potentially promising method for removing oxygen from organic compounds and converting them to hydrocarbons. This work evaluated a set of commercial and laboratory-synthesized catalysts for their hydrocarbon production performance via the pyrolysis/catalytic cracking route. Three types of biomass feedstocks; cellulose, lignin, and wood were pyrolyzed (batch experiments) in quartz boats in physical contact with the catalysts at temperature ranging from 400 °C to 600 °C and catalyst-to-biomass ratios of 5-10 by weight. Molecular-beam mass spectrometry (MBMS) was used to analyze the product vapor and gas composition. The highest yield of hydrocarbons (approximately 16 wt.%, including 3.5 wt.% of toluene) was achieved using nickel, cobalt, iron, and gallium-substituted ZSM-5. Tests performed using a semi-continuous flow reactor allowed us to observe the change in the composition of the volatiles produced by the pyrolysis/catalytic vapor cracking reactions as a function of the catalyst time-on-stream. The deoxygenation activity decreased with time because of coke deposits formed on the catalyst.  相似文献   

11.
The potential offered by biomass and solid wastes for solving some of the world's energy problems is widely recognised. The energy in biomass may be realised either by direct use as in combustion, or by upgrading into a more valuable and usable fuel such as fuel gas, fuel oil, transport fuel or higher value products for the chemical industry. This paper is concerned with conversion and upgrading by pyrolysis and briefly describes the technologies of fast pyrolysis with particular reference to the use of catalysts in chemicals production and the use of catalytic processes in upgrading the primary pyrolysis products to higher quality and higher value fuels and chemicals. There are natural catalysts in biomass which substantially influence the production of high yielding chemicals. Removal or reinforcement of these catalysts has a dramatic effect on product yield and composition. The pyrolysis vapours can be catalytically cracked over zeolites to give aromatics and other hydrocarbon products which can be further converted into gasoline and diesel and the condensed liquid can be hydrotreated to a naphtha like product also for upgrading into transport fuels. There is, however, considerable uncertainty over the ability of the upgrading technology to be scaled up to commercial feasibility most notably in terms of catalyst performance and life. Considerably more research and development is needed to develop and prove suitable catalyst systems. There is also considerable uncertainty over the cost of upgrading in terms of capital costs, operating costs and performance and some preliminary estimates are included.  相似文献   

12.
Recent advances in lignocellulosic biomass valorization for producing fuels and commodities (olefins and BTX aromatics) are gathered in this paper, with a focus on the conversion of bio-oil (produced by fast pyrolysis of biomass). The main valorization routes are: (i) conditioning of bio-oil (by esterification, aldol condensation, ketonization, in situ cracking, and mild hydrodeoxygenation) for its use as a fuel or stable raw material for further catalytic processing; (ii) production of fuels by deep hydrodeoxygenation; (iii) ex situ catalytic cracking (in line) of the volatiles produced in biomass pyrolysis, aimed at the selective production of olefins and aromatics; (iv) cracking of raw bio-oil in units designed with specific objectives concerning selectivity; and (v) processing in fluidized bed catalytic cracking (FCC) units. This review deals with the technological evolution of these routes, in terms of catalysts, reaction conditions, reactors, and product yields. A study has been carried out on the current state-of-knowledge of the technological capacity, advantages and disadvantages of the different routes, as well as on the prospects for the implementation of each route within the scope of the Sustainable Refinery. © 2018 Society of Chemical Industry  相似文献   

13.
Kraft pulp production generates residues and by-products of significant importance to the mill. Solid residues from forestry activities are commonly used to generate steam in power boilers. In the recovery cycle, black liquor generates steam (and subsequently energy) by burning in the Tomlinson boiler, while white liquor is regenerated. Well-developed alternative technologies can use these residues and by-products to generate different types of biofuels. This review addresses the use of such technologies integrated with Kraft mills, in the concept of biorefineries, showing advantages, disadvantages, and successful examples. Solid residues from forestry can be used to produce bio-oil through processes such as fast pyrolysis and hydrothermal liquefaction. Bio-oils are currently used for heating through combustion in commercial/industrial boilers, but greater appreciation occurs if used as biofuels, which is done through catalytic upgrading processes. Black liquor gasification generates synthesis gas, which can be burned for energy co-generation, used to produce synthetic fuels, or as a hydrogenating agent for bio-oil or crude tall oil catalytic upgrading. Kraft biorefineries are gradually being implemented, justifying efforts to improve existing and new biomass conversion technologies.  相似文献   

14.
Second generation biofuels are produced in the bioliq® process at the Karlsruhe Institute of Technology via gasification of pyrolysis oil and synthesis of gasoline from the emerging synthesis gas. An alternative strategy is the direct upgrading of the pyrolysis oil by hydrodeoxygenation (HDO). The present study reports on the HDO of guaiacol as one of the phenolic compounds strongly abundant in such mixtures. Special focus was laid on the solvent influence using Pt‐based catalysts. Higher HDO ability was seen using nonpolar solvents and acidic supports. Characterization of the catalysts before and after the test showed that the solvent did not only influence the reactivity, but also the catalyst stability.  相似文献   

15.
With the recent emphasis and development of sustainable chemistry, the conversion of biomass feedstocks into alternative fuels and fine chemicals over various heterogeneous catalysts has received much attention. In particular, owing to their uniform micropores, strong acidity, and stable and rigid frameworks, zeolites as catalysts or co-catalysts have exhibited excellent catalytic performances in many reactions, including hydrodesulfurization, Fischer-Tropsch synthesis, and hydrodeoxygenation. However, the relatively small sizes of the zeolite micropores strongly limit the conversion of bulky biomolecules. To overcome this issue, mesoporous zeolites with pores larger than those of biomolecules have been synthesized. As expected, these mesoporous zeolites have outperformed conventional zeolites with improved activities, better selectivities, and longer catalyst lives for the upgrading of pyrolysis oils, the transformation of lipids into biofuels, and the conversion of glycerol into acrolein and aromatic compounds. This review briefly summarizes recent works on the rational synthesis of mesoporous zeolites and their superior catalytic properties in biomass conversion.
  相似文献   

16.
生物质液化是当今研究生物质能源的热点之一。本文详细综述了三大类固体酸催化剂在生物质液化中的应用现状,简单介绍了固体酸催化剂在生物油改性中的研究进展。对固体酸催化剂在生物质液化及生物油改性方面的发展前景进行了展望。  相似文献   

17.
The problem of preparing engine fuels from renewable feedstocks via the catalytic processing of inedible vegetable oils and fats is considered. Different types of inedible feedstocks are described, including algae, inedible plants, wood processing products, and waste fats and oils. Catalytic processes are considered for preparing the second generation biodiesel through the hydrodeoxygenation and deoxygenation of triglycerides and fatty acids, and of their derivatives. Brief information on catalysts for the deoxygenation of fatty acids is given. Special attention is given to analyzing the mechanism and kinetics of the deoxygenation reaction. Based on conducted kinetic and quantum-chemical investigations and using the literature data, a deoxygenation mechanism is proposed by the authors that explains the observed dependences of decarboxylation and decarbonylation contributions on the reaction conditions (the stearic acid, water, and catalyst concentrations, the hydrogen and CO pressures, and the temperature). Examples of the application of hydrocarbon biodiesel in transport are presented.  相似文献   

18.
The scientific and technical achievements made during the last 15 years in the deoxygenation processes for the production of hydrocarbon biofuels from oil and fatty raw materials are reviewed. The most advanced methods for the processing of triglycerides into hydrocarbons are associated with the use of pyrolysis, catalytic cracking, and hydrotreatment processes similar to those already used at petrochemical plants and oil refineries. The hydrotreatment technologies, which have already been adopted or ready for industrial application, are considered in more details. Nonsulphide catalysts for the single-stage production of waxy diesel fractions from vegetable oils and combined technologies are promising for reducing the consumption of hydrogen and increasing the yield of hydrocarbon products and the flexibility in obtaining different types of fuel.  相似文献   

19.
Hydroprocessing routes, when utilized for upgrading bituminous feedstocks and heavy oils, represent versatile means for production of additional liquid fuels. Production of pure hydrogen involves expensive gas purification and shift conversion steps so that by-passing these would be economically beneficial. Experiments undertaken to determine the effect of the presence of carbon monoxide (CO) in the hydrogen stream on the hydrocracking of Athabasca bitumen in a high-pressure continuous-flow system showed that CO content up to 50 mol % in the hydrogen feed would not affect thermal hydrocracking detrimentally. The use of a catalyst with stabilizing capability emphasized the apparent non-interference of CO with thermal cracking. On the other hand, significant performance inhibition of molybdenum-containing multi-functional catalysts indicated surface poisoning by CO adsorption which was partially alleviated in the presence of steam. On the addition of water to the feedstock, the latter catalysts caused substantial water-gas shift reaction to take place, accompanied by less extensive methanation. These reactions were less apparent with the other type of catalysts. Depending upon feedstock characteristics it may be possible to incorporate catalytic components allowing the presence of CO in the feed. In the overall evaluation, other important effects of CO presence would have to be examined in connection with the coking propensity of the feedstock and the reactor temperature control.  相似文献   

20.
生物质热解油精制改性用固体酸催化剂研究进展   总被引:1,自引:0,他引:1  
综述了近年来生物质热解油的精制改性中所用固体酸催化剂,包括SO42-/MxOy以及分子筛两大类,对其应用范围以及优缺点进行了分析比较。指出目前以固体酸为催化剂的生物质热解油提质方法主要是催化裂解和催化酯化。根据生物油中化学组成的特点,将极性基团(羧基、醛基)转化为稳定的非极性基团(酯基、缩醛)的化学改性方法是生物油改性具有潜力的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号