首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
JE Yoo  CK Kim 《Polymer International》2004,53(12):1950-1956
The isothermal miscibility map and phase‐separation temperatures caused by lower critical solution temperature‐type phase behavior for blends of poly[2,2,‐propane‐bis{4‐(2‐methyl phenyl)} carbonate]‐poly[2,2,‐propane‐bis{4‐(2,6‐dimethyl phenyl)} carbonate] (DMPC‐TMPC) with poly[(styrene)‐co‐(methyl methacrylate)] (SMMA) copolymers have been determined. SMMA copolymers containing equal to or less than 37 wt% MMA formed miscible blends with DMPC‐TMPC copolycarbonates containing equal to or more than 60 wt% TMPC. The observed phase‐separation temperatures indicate that the miscibility decreases as the DMPC content in DMPC‐TMPC increases, while addition of MMA to the styrene initially increases miscibility with DMPC‐TMPC but ultimately leads to immiscibility. The binary interaction energies involved in these blends were calculated from the phase boundaries using the lattice‐fluid theory combined with the binary interaction model. The spinodal temperatures predicted from the lattice‐fluid theory using the calculated interaction energies are similar to the experimental phase‐separation temperatures. Copyright © 2004 Society of Chemical Industry  相似文献   

2.
J.E. Yoo 《Polymer》2004,45(1):287-293
The phase behavior of ternary blends of dimethylpolycarbonate (DMPC), tetramethyl polycarbonate (TMPC), styrene-acrylonitrile (SAN) copolymer has been explored. The experimental phase behavior of ternary blends was compared with that of binary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of copolycarbonates (DMPC-TMPC). Miscible region of DMPC/TMPC/SAN ternary blends is narrower than that of DMPC-TMPC/SAN binary blends. In addition, phase separation temperature of binary blend was higher than that of corresponding ternary blend. However, the entropic and energetic terms of ternary blends were more favorable for miscibility than those of binary blends. To understand the phase behavior of blends, phase stability conditions of binary and ternary blends were analyzed. Some ternary blends that have negative interaction energy were not miscible because these blends do not satisfy stability conditions. It was revealed that the addition of component, accompanied by the asymmetry in the binary interactions, results in destabilization of blend.  相似文献   

3.
Y. KimJ.E. Yoo  C.K. Kim 《Polymer》2003,44(18):5439-5447
The phase behavior of dimethyl polycarbonate-tetramethyl polycarbonate (DMPC-TMPC) blends with poly(styrene-co-acrylonitrile) copolymers (SAN) and the interaction energies of binary pairs involved in blend has been explored. DMPC-TMPC copolycarbonates containing 60 wt% TMPC or more were formed miscible blends with SAN containing limited amounts of AN. The miscibility of copolycarbonate with SAN decreases as the DMPC content increases. The miscible blends showed the LCST-type phase behavior or did not phase separate until thermal degradation. The binary interaction energies involved in the miscible blends were calculated from the phase boundaries using the lattice-fluid theory combined with binary interaction model. The phenyl ring substitution with methyl groups did not lead to interactions that are favorable for miscibility with polyacrylonitrile (PAN). The interaction energies of the polycarbonates blends with SAN copolymers as a function of AN content were obtained. It was revealed that the incline of the number of methyl groups on the phenyl rings of bisphenol-A unit acts favorably for the miscibility with SAN copolymer when SAN contains less than about 30 wt% AN and shifts the most favorable interaction to the low AN content.  相似文献   

4.
The phase behavior of ternary blends of tetramethyl polycarbonate (TMPC), polycarbonate (PC), and styrenic polymers has been examined by experiment and analyzed in terms of thermodynamic theories. The phase boundaries were predicted using both the modified Flory-Huggins theory and the lattice fluid theory. The boundaries predicted using the lattice fluid theory agree best with the experimental results. The experimental phase behavior of ternary blends was compared with binary blends having exactly the same chemical components and compositions except that the TMPC and PC units were present in the form of a copolycarbonate in the binary. The miscible region of these ternary blends is much narrower than that of the corresponding binary blends, even though the entropic and energetic terms of such ternary blends are more favorable than those of the binary blends. It is shown that a negative value of noncombinatorial free energy in multicomponent systems is not a sufficient condition for miscibility, because of asymmetries of mer-mer interactions. A comparison of the stability conditions for these binary and ternary blends shows that increasing the degrees of freedom tends to destabilize the mixture.  相似文献   

5.
A ternary blend system comprising poly(cyclohexyl methacrylate) (PCHMA), poly(α‐methyl styrene) (PαMS) and poly(4‐methyl styrene) (P4MS) was investigated by thermal analysis, optical and scanning electron microscopy. Ternary phase behaviour was compared with the behaviour for the three constituent binary pairs. This study showed that the ternary blends of PCHMA/PαMS/P4MS in most compositions were miscible, with an apparent glass transition temperature (Tg) and distinct cloud‐point transitions, which were located at lower temperatures than their binary counterparts. However, in a closed‐loop range of compositions roughly near the centre of the triangular phase diagram, some ternary blends displayed phase separation with heterogeneity domains of about 1 µm. Therefore, it is properly concluded that ternary PCHMA/PαMS/P4M is partially miscible with a small closed‐loop immisciblity range, even though all the constituent binary pairs are fully miscible. Thermodynamic backgrounds leading to decreased miscibility and greater heterogeneity in a ternary polymer system in comparison with the binary counterparts are discussed. © 2003 Society of Chemical Industry  相似文献   

6.
Miscibility, phase diagrams and morphology of poly(ε‐caprolactone) (PCL)/poly(benzyl methacrylate) (PBzMA)/poly(styrene‐co‐acrylonitrile) (SAN) ternary blends were investigated by differential scanning calorimetry (DSC), optical microscopy (OM), and scanning electron microscopy (SEM). The miscibility window of PCL/PBzMA/SAN ternary blends is influenced by the acrylonitrile (AN) content in the SAN copolymers. At ambient temperature, the ternary polymer blend is completely miscible within a closed‐loop miscibility window. DSC showed only one glass transition temperature (Tg) for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends; furthermore, OM and SEM results showed that PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 were homogeneous for any composition of the ternary phase diagram. Hence, it demonstrated that miscibility exists for PCL/PBzMA/SAN‐17 and PCL/PBzMA/SAN‐25 ternary blends, but that the ternary system becomes phase‐separated outside these AN contents. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Although poly(ethyl methacrylate) (PEMA) and poly(methyl methacrylate) (PMMA) are only slightly different in structure, they are known to be immiscible. Polystyrene is not miscible with PEMA or PMMA. However, when polystyrene is modified to contain certain vinyl phenol groups to become poly(styrene‐co‐vinyl phenol) (PSVPh), it can be miscible with both PEMA and PMMA. What is the miscibility of a ternary blend consisting of PEMA, PMMA, and PSVPh? For this question to be answered, binary blends of PEMA (or PMMA) were first made with PSVPh. Their miscibility was examined. Then, ternary blends composed of PEMA, PMMA, and PSVPh were prepared and measured calorimetrically. The role of PSVPh between PEMA and PMMA and the effect of different contents of vinyl phenol groups on the miscibility of the ternary blends were investigated. On the basis of experimental results, increasing the vinyl phenol contents of PSVPh seemed to have an adverse effect on the miscibility of the ternary blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2088–2094, 2003  相似文献   

9.
A. Múgica  E. Calahorra 《Polymer》2005,46(24):10741-10749
The miscibility in blends of poly(cyclohexyl methacrylate) (PCHMA) with poly(4-vinyl phenol) (PVPh) and with copolymers containing vinyl phenol and styrene units (PSVPh) has been examined by Fourier transform infrared spectroscopy. The phase behaviour of the PCHMA/PSVPh system was predicted by means of association model of Painter and Coleman (PCAM) with a single interassociaton equilibrium constant (KA) as well as by means of a new double interassociation model (D.I.M). The second interassociation equilibrium includes the weaker interaction between carbonyl and phenyl groups of CHMA and styrene (S) repeat units, respectively. In order to quantify the effect of free volume on miscibility, different contributions to free energy of mixing have been calculated. The predicted miscibility map did not change appreciably when compressibility effects were considered. On the other hand, by taking into account the second weaker interaction, better agreement between experimental and predicted miscibility maps is found for binary PCHMA/PSVPh blends. Finally, the D.I.M. has been extended to the case of ternary PCHMA/PS/PVPh blends.  相似文献   

10.
The miscibility of blends of bisphenol‐A polycarbonate (BAPC) and tetramethyl bisphenol‐A polycarbonate (TMPC) with copolymers of poly(styrene‐co‐4‐hydroxystyrene) (PSHS) was studied in this work. It has been demonstrated that BAPC is miscible with PSHS over a region of approximately 45–75 mol % hydroxyl groups in the copolymer. TMPC has a wider miscible window than BAPC when blended with PSHS. The blend miscibility was considered to be driven by the intermolecular attractive interactions between the hydroxyl groups of the PSHS and the π electrons of the aromatic rings of both polycarbonates (PCs). As the FTIR measurements showed, after blending of BAPC with PSHS, there is no visible shift of the carbonyl band of BAPC at 1774 cm−1, whereas the stretching frequency of the free hydroxyl groups of the copoly‐ mers at 3523 cm−1 disappeared. The large positive values of the segment interaction energy density parameter Bst‐HS calculated from the group contribution approach indicated that the intramolecular repulsive interaction may also have played a role in the promotion of the blend miscibility. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 639–646, 1999  相似文献   

11.
The phase behavior and kinetics of phase separation for blends of the random copolymer poly(styrene‐co‐methyl methacrylate) (SMMA) and poly(styrene‐co‐acrylonitrile) (SAN) were studied by using small‐angle laser light scattering. The partially miscible SMMA/SAN blends undergo spinodal decomposition (SD) and subsequent domain coarsening when quenched inside the unstable region. For blends of SMMA and SAN, the early stages of the phase separation process could be observed, unlike a number of other blends where the earliest stages are not visible by light scattering. The process was described in terms of the Cahn–Hilliard linear theory. Subsequently, a coarsening process was detected and the time evolution of qm at the beginning of the late stages of phase separation followed the relationship qmt?1/3, corresponding to an evaporation–condensation mechanism. Self‐similar growth of the phase‐separated structures at different timescales was observed for the late stage. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
The phase behavior of ternary blends of bisphenol-A polycarbonate (PC), tetramethyl bisphenol-A polycarbonate (TMPC), and poly (?-caprolactone) (PCL), where each binary pair forms completely miscible blends, was investigated. The ternary blends were found to be miscible for all compositions and do not phase separate prior to thermal decomposition. The melting point depression method based on both the Flory-Huggins theory and the equation of state theory of Sanchez-Lacombe was used to evaluate interaction parameters for each pair.  相似文献   

13.
Summary Poly(N-vinyl pyrrolidone) (PVPr) forms miscible binary blends with poly(hydroxyethyl methacrylate), poly(hydroxypropyl methacrylate) and two styrene/allyl alcohol copolymers, as shown by their glass transition behavior. However, PVPr is immiscible with poly(ethyl methacrylate), poly(n-propyl methacrylate) and polystyrene. The results indicate the importance of hydroxyl groups in achieving miscibility.  相似文献   

14.
Won-Ki Lee  Chang-Sik Ha 《Polymer》1998,39(26):7131-7134
The miscibility and surface crystalline structure of blends containing poly(vinylidene fluoride) (PVDF) composed of and γ phases were investigated by atomic force microscopy (AFM) and differential scanning calorimeter (d.s.c.) measurements. It was found that the surface crystalline phase of PVDF and the degree of surface enrichment of a lower surface free energy component in a blend might strongly be affected by the magnitude of the intermolecular interaction, even though the blend is miscible. Also, the segmental interaction parameters was determined by combining the Tm depression of PVDF in a blend and the binary interaction model. According to the binary interaction model, the introduction of a carboxyl group for miscible [poly(methyl methacrylate)/PVDF] and [poly(vinyl acetate)/PVDF] blends decreased their miscibility.  相似文献   

15.
Poly(styrene‐co‐methacrylic acid) (PSMA) and poly(styrene‐co‐4‐vinylpyridine) (PS4VP) of different compositions were prepared and characterized. The phase behavior of these copolymers as binary PSMA/PS4VP mixtures or with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) as PPO/PSMA or PPO/PS4VP and PPO/PSMA/PS4VP ternary blends was investigated by differential scanning calorimetry (DSC). This study showed that PPO was miscible with PS4VP containing up to 15 mol % 4‐vinylpyridine (4VP) but immiscible with PS4VP‐30 (where the number following the hyphen refers to the percentage 4VP in the polymer) and PSMA‐20 (where the number following the hyphen refers to the percentage methacrylic acid in the polymer) over the entire composition range. To examine the morphology of the immiscible blends, scanning electron microscopy was used. Because of the hydrogen‐bonding specific interactions that occurred between the carboxylic groups of PSMA and the pyridine groups of PS4VP, chloroform solutions of PSMA‐20 and PS4VP‐15 formed interpolymer complexes. The obtained glass‐transition temperatures (Tg's) of the PSMA‐20/PS4VP‐15 complexes were found to be higher than those calculated from the additivity rule. Although, depending on the content of 4VP, the shape of the Tg of the PPO/PS4VP blends changed from concave to S‐shaped in the case of the miscible blends, two Tg were observed with each PPO/PS4VP‐30 and PPO/PS4VP‐40 blend. The thermal stability of the PSMA‐20/PS4VP‐15 interpolymer complexes was studied by thermogravimetry. On the basis of the obtained results, the phase behavior of the ternary PPO/PSMA‐20/PS4VP‐15 blends was investigated by DSC. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Poly(vinylidene chloride‐co‐acrylonitrile) (Saran F), poly(hydroxy ether of bisphenol A) (phenoxy), poly(styrene‐co‐acrylonitrile) (PSAN), and poly(vinyl phenol) (PVPh) all have the same characteristic: miscibility with atactic poly(methyl methacrylate) (aPMMA). However, the miscibility of Saran F with the other polymer (phenoxy, PSAN, or PVPh) is not guaranteed and was thus investigated. Saran F was found to be miscible only with PSAN but not miscible with phenoxy and PVPh. Because Saran F and PVPh are not miscible, although they are both miscible with aPMMA, aPMMA can thus be used as a potential cosolvent to homogenize PVPh/Saran F. The second part of this report focused on the miscibility of a ternary blend consisting of Saran F, PVPh, and aPMMA to investigate the cosolvent effect of aPMMA. Factors affecting the miscibility were studied. The established phase diagram indicated that the ternary blends with high PVPh/Saran F weight ratio were found to be mostly immiscible. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3068–3073, 2004  相似文献   

17.
The ternary blends of poly(methyl methacrylate)/poly(vinyl pyrrolidone)/poly(ethylene oxide), PMMA/PVP/PEO, were prepared by melting process, using a Haake plastograph, and nuclear magnetic resonance spectroscopy (NMR) was used as a methodology to characterize the molecular mobility of blend components, because NMR has several techniques that allow us to evaluate polymeric materials in different time scales. The NMR results showed that the blends were miscible on a molecular level. The values of proton lattice relaxation time in the rotating frame (T1ρH) indicate that the ternary blend interaction did not reduce the intermolecular distance, because it is dipole–dipole. The molecular motion of each component, even in the miscible amorphous phase and the addition of PEO, has a definitive effect on the PMMA molecular mobility. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1492–1495, 2006  相似文献   

18.
Poly(vinyl phenol) (PVPh) has previously been found to be successful in making immiscible poly(methyl methacrylate) (PMMA)/poly(vinyl acetate) (PVAc) miscible. Poly(ethyl methacrylate) (PEMA) with one more methyl group than PMMA is also immiscible with PVAc. PEMA and PVAc are miscible with PVPh according to the literature. To determine whether PVPh can also cosolubilize PEMA/PVAc, PVPh samples of two different molecular weights have been mixed in this study with PEMA and PVAc to produce a ternary blend. On the basis of the calorimetry data, the ternary PEMA/PVAc/PVPh blend, regardless of the molecular weight of PVPh, has been determined to be miscible. The reason for the observed miscibility is probably that the interactions between PVAc and PVPh are similar in magnitude to those between PEMA and PVPh. A modified Kwei equation based on the binary interaction parameters proposed previously is used to describe the experimental glass‐transition temperature of the miscible ternary blend almost quantitatively well. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 643–652, 2006  相似文献   

19.
Poly(vinyl acetate) and vinyl acetate-ethylene (VAE) copolymers compose one of the more important polymeric materials, widely employed in coating and adhesive applications. A new class of miscible polymer blends involving poly(vinyl acetate) and VAE with styrene-acrylic acid and acrylate-acrylic acid copolymers has been found. Experimental windows of miscibility as a function of the ethylene content for VAE copolymers and the acrylic acid content of the acrylate-acrylic acid copolymers are observed (acrylate = methyl acrylate, ethyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate). Employing well-established analog heat of mixing measurements, predicted windows of miscibility were compared with experimental results. Fair qualitative agreement was observed and supported the hypothesis that specific rejection arguments can be employed to explain the observed miscibility. Failure to quantitatively predict miscibility based on the analog heat of mixing measurements may be due to the higher association tendencies of the model compounds relative to acrylic acid units in the high molecular weight polymers. No miscible combinations were found for methyl methacrylate-acrylic acid copolymers or acrylate-methacrylic acid copolymers in admixture with poly(vinyl acetate) or the VAE copolymers, thus indicating the sensitivity of phase behavior to minor structural changes. VAE (30 wt % ethylene) copolymers were also noted to be miscible with several polymers previously noted to be miscible with poly(vinyl acetate), namely, poly(vinylidene fluoride), poly(ethylene oxide), and nitrocellulose. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Atactic poly(methyl methacrylate) (aPMMA) and poly(vinyl pyrrolidone) (PVP) with a weight‐average molecular weight of 360,000 g/mol were found to be immiscible on the basis of preliminary studies. Poly(styrene‐co‐vinyl phenol) (MPS) with a certain concentration of vinyl phenol groups is known to be miscible with both aPMMA and PVP. Is it possible to homogenize an immiscible aPMMA/PVP pair by the addition of MPS? For this question to be answered, a ternary blend consisting of aPMMA, PVP, and MPS was prepared and measured calorimetrically. The role of MPS between aPMMA and PVP and the effects of different concentrations of vinyl phenol groups on the miscibility of the ternary blends were investigated. According to experimental results, increasing the vinyl phenol contents of MPS has an adverse effect on the miscibility of the ternary blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2064–2070, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号