首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Au/CeO2 catalysts prepared by co-precipitation (CP) and deposition-precipitation (DP) methods were tested for low temperature CO oxidation reaction. The structural characters and redox features of the catalysts were investigated by XRD, XPS and H2-TPR. Their catalytic performances for low temperature CO oxidation were studied by means of a microreactor -GC system. It showed that the catalytic activities of Au/CeO2 catalysts greatly depended on the preparation method. The catalysts prepared by DP method exhibited a surprisingly higher activity towards CO oxidation than that prepared by CP method. This may arise from the differences in the particle sizes of Au and redox properties of the catalysts. The low Au loading and the resistance to high temperature of DP-prepared catalyst made it more applicable.  相似文献   

2.
Copper oxide catalysts supported on ceria were prepared by wet impregnation method using finely CeO2 nanocrystals, which was derived from alcohothermal synthesis, and copper nitrate dissolved in the distilled water. The catalytic activity of the prepared CeO2 and CuO/CeO2 catalysts for low-temperature CO oxidation was investigated by means of a microreactor-GC system. The samples were characterized using BET, XRD, SEM, HRTEM and TPR.  相似文献   

3.
CuO/Ce0.8Zr0.2O2 and CuO/CeO2 catalysts were prepared via a impregnation method characterized by using FT-Raman, XRD, XPS and H2-TPR technologies. The catalytic activity of the samples for low-temperature CO oxidation was investigated by means of a microreactor-GC system. The influence of the calcination temperature and different supports on the catalytic activity was studied.  相似文献   

4.
The effect of the support nature on the performance of Pd catalysts during partial oxidation of ethanol was studied. H2, CO2 and acetaldehyde formation was favored on Pd/CeO2, whereas CO production was facilitated over Pd/Y2O3 catalyst. According to the reaction mechanism, determined by DRIFTS analyses, some reaction pathways are favored depending on the support nature, which can explain the differences observed on products distribution. On Pd/Y2O3 catalyst, the production of acetate species was promoted, which explain the higher CO formation, since acetate species can be decomposed to CH4 and CO at high temperatures. On Pd/CeO2 catalyst, the acetaldehyde preferentially desorbs and/or decomposes to H2, CH4 and CO. The CO formed is further oxidized to CO2, which seems to be promoted on Pd/CeO2 catalyst.  相似文献   

5.
The physico-chemical properties and activity of Ce-Zr mixed oxides, CeO2 and ZrO2 in CO oxidation have been studied considering both their usefulness as supports for Au nanoparticles and their contribution to the reaction. A series of Ce1−xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1) oxides has been prepared by sol–gel like method and tested in CO oxidation. Highly uniform, nanosized, Ce-Zr solid solutions were obtained. The activity of mixed oxides in CO oxidation was found to be dependent on Ce/Zr molar ratio and related to their reducibility and/or oxygen mobility. CeO2 and Ce0.75Zr0.25O2, characterized by the cubic crystalline phase show the highest activity in CO oxidation. It suggests that the presence of a cubic crystalline phase in Ce-Zr solid solution improves its catalytic activity in CO oxidation. The relation between the physico-chemical properties of the supports and the catalytic performance of Au/Ce1−xZrxO2 catalysts in CO oxidation reaction has been investigated. Gold was deposited by the direct anionic exchange (DAE) method. The role of the support in the creation of catalytic performance of supported Au nanoparticles in CO oxidation was significant. A direct correlation between activity and catalysts reducibility was observed. Ceria, which is susceptible to the reduction at the lowest temperature, in the presence of highly dispersed Au nanoparticles, appears to be responsible for the activity of the studied catalysts. CeO2-ZrO2 mixed oxides are promising supports for Au nanoparticles in CO oxidation whose activity is found to be dependent on Ce/Zr molar ratio.  相似文献   

6.
Aromatization of n-hexane on Mo2C catalysts   总被引:4,自引:0,他引:4  
The deposition-precipitation method was used to prepare gold catalysts based on different supports. Their catalytic activities for combustion of carbon monoxide (CO) and formaldehyde (HCHO) were investigated. All these catalysts showed good activity for the two reactions and the Au/CeO2-a catalyst exhibited the highest activity for the two reactions. Furthermore, catalysts derived from the as-precipitate hydroxides exhibited higher activity than that from corresponding oxide supports. The BET, XRD, TEM and XPS were carried out. The results indicated that the gold dispersed more homogeneous on the as-precipitate hydroxide supports than that on the corresponding oxide supports.  相似文献   

7.
Catalytic activity of supported Pd metal catalysts (Pd metal deposited on carbon, alumina, gallia, ceria or thoria) showing almost no activity in the liquid-phase direct oxidation of H2 to H2O2 (at 295 K) in acidic medium (0.02 M H2SO4) can be increased drastically by oxidizing them using different oxidizing agents, such as perchloric acid, H2O2, N2O and air. In the case of the Pd/carbon (or alumina) catalyst, perchloric acid was found to be the most effective oxidizing agent. The order of the H2-to-H2O2 conversion activity for the perchloric-acid-oxidized Pd/carbon (or alumina) and air-oxidized other metal oxide supported Pd catalysts is as follows: Pd/alumina < Pd/carbon < Pd/CeO2 < Pd/ThO2 < Pd/Ga2O3. The H2 oxidation involves lattice oxygen from the oxidized catalysts. The catalyst activation results mostly from the oxidation of Pd metal from the catalyst producing bulk or sub-surface PdO. It also caused a drastic reduction in the H2O2 decomposition activity of the catalysts. There exists a close relationship between the H2-to-H2O2 conversion activity and/or H2O2 selectivity in the oxidation process and the H2O2 decomposition activity of the catalysts; the higher the H2O2 decomposition activity, the lower the H2-to-H2O2 conversion activity and/or H2O2 selectivity.  相似文献   

8.
In this investigation, CuO/CeO2–MxOy (MxOy = Al2O3, ZrO2 and SiO2) nanocomposite oxide catalysts were prepared by deposition-precipitation and wet impregnation methods, and evaluated for CO oxidation. Catalysts were characterized by XRD, TEM, UV–vis DRS, BET surface area and H2-TPR techniques. The synthesized catalysts exhibited high specific surface area, and uniform particle size distribution over the supports. The nanocrystalline texture of mixed metal oxides is clearly evidenced by TEM analysis. TPR and XRD results revealed synergetic interactions between copper oxide and ceria. Among various catalysts investigated, the CuO/CeO2–Al2O3 combination exhibited excellent CO oxidation activity with T1/2 = 374 K and 100% CO conversion at below 420 K.  相似文献   

9.
Shan Xu 《Fuel》2005,84(5):563-567
Nickel catalysts over the CeO2-ZrO2 solid solution were successfully prepared by the co-precipitation method for partial oxidation of methane. The structures of the catalysts were systematically examined by N2 adsorption/desorption, CO chemisorption, X-ray diffraction (XRD) and H2-TPR techniques. The catalytic performance and carbon deposition were investigated for partial oxidation of methane as well. The results showed that the Ni/CeO2-ZrO2 catalysts had a large BET area and fine Ni dispersion. By the co-precipitation method, Ni and CeO2-ZrO2 solid solution had strong interaction confirmed by the H2-TPR analysis. The Ni/CeO2-ZrO2 catalysts showed high activity and stability and the Ni/Ce0.25Zr0.75O2 exhibited the best activity and coking resistance among these catalysts. The catalytic activities and coking resistant behaviors of catalysts were affected by the surface and structural properties of the catalysts.  相似文献   

10.
Catalytic combustion of ethyl acetate was investigated over various CeO2-supported precious metal catalysts prepared by impregnation method, and the effect of reduction treatment on the activity was examined. Among the catalysts tested, Ru/CeO2 achieved the highest activity for ethyl acetate combustion, and the activity was almost unchanged by the heat treatment in a hydrogen atmosphere. In the cases of Pt/CeO2, Pd/CeO2, and Rh/CeO2, the catalytic activity was enhanced by the reduction treatment at 400 °C, though the activity of the reduced catalysts was still inferior to that of Ru/CeO2. It was confirmed by temperature-programmed reduction that the reduction of the ruthenium species was initiated at the lowest temperature among the CeO2-supported precious metals. The precious metal species reducible at lower temperatures should be responsible for the high activity in the complete oxidation of ethyl acetate.  相似文献   

11.
Systems of Pd supported on various La2O3-modified -Al2O3 and CeO2–Al2O3 catalysts were tested for catalytic methanol decomposition and characterized by means of XRD, BET, TPR, H2-chemisorption and CO–FTIR. The addition of lanthanum significantly improved the selectivity of CO and H2 for all the catalysts but showed a different influence on the catalytic activity in two systems. Methanol conversion decreased on La2O3-modified Pd/-Al2O3 catalysts, in line with the reduction of Pd dispersion, while the addition of La2O3 improved the dispersion of Pd and reinforced Pd–CeO2 interaction for La2O3-modified Pd/CeO2–Al2O3 catalysts, which resulted in a high production rate of CO and H2. Thus, a synergistic effect between CeO2 and La2O3 was observed on -Al2O3-supported Pd catalyst for methanol decomposition.  相似文献   

12.
Heterogeneous catalysts composed of Pd nanoparticles on zinc oxide (ZnO) and aluminum oxide (Al2O3, alumina) were synthesized and tested for catalytic activity. Palladium nanoparticles were synthesized via solution-precipitation methods and deposited on aluminum oxide and zinc oxide supports. The particles were synthesized by decomposing a palladium precursor (Pd(Mes)2) in a solution of trioctylphosphine [TOP route] or palladium acetate (Pd(OAc)2) in a solution of octylamine [amine route] at 300 °C. The particles were washed and suspended in hexane, whereupon they were deposited on an oxide powder. Supported nanoparticle powders were subjected to CO oxidation tests to determine catalytic activity. Particle sizes ranged from 2.4 ± 0.4 nm average diameter when prepared using trioctylphosphine to 4 ± 1 nm using the amine route. No significant size change was observed after removal of the surfactant and catalytic testing by CO oxidation. The highest conversion of CO to CO2 occurred with a calcined sample, indicating that the removal of surfactant increases activity.  相似文献   

13.
Activity and selectivity of selective CO oxidation in an H2-rich gas stream over Co3O4/CeO2/ZrO2, Ag/CeO2/ZrO2, and MnO2/CeO2/ZrO2 catalysts were studied. Effects of the metaloxide types and metaloxide molar ratios were investigated. XRD, SEM, and N2 physisorption techniques were used to characterize the catalysts. All catalysts showed mesoporous structure. The best activity was obtained from 80/10/10 Co3O4/CeO2/ZrO2 catalyst, which resulted in 90% CO conversion at 200°C and selectivity greater than 80% at 125°C. Activity of the Co3O4/CeO2/ZrO2 catalyst increased with increase in Co3O4 molar ratio.  相似文献   

14.
Adsorption and decomposition of ethanol on supported Au catalysts   总被引:1,自引:0,他引:1  
The adsorption and reactions of ethanol are investigated on Au nanoparticles supported by various oxides and carbon Norit. The catalysts are characterized by means of XPS. Infrared spectroscopic studies reveal the dissociation of ethanol to ethoxy species at 300 K on all the oxidic supports. The role of Au is manifested in the enhanced formation of ethoxy species on Au/SiO2, and in increased amounts of desorbed products in the TPD spectra. The supported Au particles mainly catalyse the dehydrogenation of ethanol, to produce hydrogen and acetaldehyde. An exception is Au/Al2O3, where the main process is dehydration to yield ethylene and dimethyl ether. C–C bond cleavage occurs to only a limited extent on all samples. As regards to the production of hydrogen, the most effective catalyst is Au/CeO2, followed by Au/SiO2, Au/Norit, Au/TiO2 and Au/MgO. A fraction of acetaldehyde formed in the primary process on Au/CeO2 is converted above 623 K into 2-pentanone and 3-penten-2-one. The decomposition of ethanol on Au/CeO2 follows first-order kinetics. The activation energy of this process is 57.0 kJ/mol. No deactivation of Au/CeO2 is observed during 10 h at 623 K. It is assumed that the interface between Au and partially reduced CeO2 is responsible for the high activity of the Au/CeO2 catalyst.  相似文献   

15.
Gang Wang  Yuqing Zha  Tong Ding 《Fuel》2010,89(9):2244-95
A series of high-temperature close coupled catalysts Pd/Ce-Zr-M/Al2O3 (M = Y, Ca or Ba) were prepared by ultrasonic-assisted successive impregnation. The catalysts were subjected to a series of characterization measurements. The results of activity evaluation show that Y is the best promoter for propane total oxidation, especially at the calcination temperature of 1100 °C. It is interesting that although the BET specific surface areas and the dispersion of Pd species decrease, the Y-promoted catalyst calcined at 1100 °C shows higher catalytic activity than the corresponding one calcined at 900 °C and better sulfur-resisting performance. The results of TEM, TPHD and CO chemisorption indicate that Y can remarkably increase the dispersion of Pd species. However, the dispersion is hard to be connected with the activity increase as the calcination temperature is elevated from 900 to 1100 °C. The change of active phases and the interaction between Pd species and the supports may account for the activity enhancement. Combined with XRD, H2-TPR and O2-TPD results, it is deduced that the coexistence of metallic Pd and PdO species in the catalysts calcined at 1100 °C may be also favorable to C3H8 oxidation. In a word, Pd/Ce-Zr-Y/Al2O3 is indeed a promising high-temperature close coupled catalyst applicable to high temperature.  相似文献   

16.
We have investigated the low-temperature activity for CO oxidation for a series of platinum catalysts supported on Al2O3, TiO2, ZSM-5, CeO2 and ZrO2-CeO2. The results show major differences in activity, due to the support for Pt, especially in the presence of water. Improved activity over ceria containing samples in presence of water is likely due to the water-gas shift (WGS) reaction. Studies with in situ IR spectroscopy suggest a surface formate mechanism for the WGS reaction on Pt/CeO2.  相似文献   

17.
Au/Al2O3 · xH2O and Au/TiO2/Al2O3 · xH2O (x = 0–3) catalysts were prepared by assembling gold nanoparticles on neat and TiO2-modified Al2O3, AlOOH, and Al(OH)3 supports, and their catalytic activity in CO oxidation was tested either as synthesized or after on-line pretreatment in O2–He at 500 °C. A promotional effect of TiO2 on the activity of gold catalysts was observed upon 500 °C-pretreatment. The catalyst stability as a function of time on stream was tested in the absence or presence of H2, and physiochemical characterization applying BET, ICP-OES, XRD, TEM, and 27Al MAS NMR was conducted.  相似文献   

18.
Ceria-supported Au catalyst has been synthesized by the solution combustion method for the first time and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Au is dispersed as Au0 as well as Au3+ states on CeO2 surface of 20-30 nm crystallites. On heating the as-prepared 1% Au/CeO2 in air, the concentration of Au3+ ions on CeO2 increases at the expense of Au0. Catalytic activities for CO and hydrocarbon oxidation and NO reduction over the as-prepared and the heat-treated 1% Au/CeO2 have been carried out using a temperature-programmed reaction technique in a packed bed tubular reactor. The results are compared with nano-sized Au metal particles dispersed on -Al2O2 substrate prepared by the same method. All the reactions over heat-treated Au/CeO2 occur at lower temperature in comparison with the as-prepared Au/CeO2 and Au/Al2O2. The rate of NO + CO reaction over as-prepared and heat-treated 1% Au/CeO2 are 28.3 and 54.0 mol g-1 s-1 at 250 and 300 °C respectively. Activation energy (E a) values are 106 and 90 kJ mol-1 for CO + O2 reaction respectively over as-prepared and heat-treated 1% Au/CeO2 respectively.  相似文献   

19.
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been used to characterize a series of Cu/Ce/Al2O3 catalysts. Catalysts were prepared by incipient wetness impregnation using metal nitrate and alkoxide precursors. Catalyst loadings were held constant at 12 wt% CuO and 5.1 wt% CeO2. Mixed oxide catalysts were prepared by impregnation of cerium first, followed by copper. The information obtained from surface and bulk characterization has been correlated with CO and CH4 oxidation activity of the catalysts. Cu/Al2O3 catalysts prepared using Cu(II) nitrate (CuN) and Cu(II) ethoxide (CuA) precursors consist of a mixture of copper surface phase and crystalline CuO. The CuA catalyst shows higher dispersion, less crystalline CuO phase, and lower oxidation activity for CO and CH4 than the CuN catalyst. For Cu/Ce/Al2O3 catalysts, Ce has little effect on the dispersion and crystallinity of the copper species. However, Cu impregnation decreases the Ce dispersion and increases the amount of crystalline CeO2 present in the catalysts, particularly in Ce modified alumina prepared using cerium alkoxide precursor (CeA). Cerium addition dramatically increases the CO oxidation activity, however, it has little effect on CH4 oxidation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The redox features and the catalytic activities of ceria nanowires, nanorods and nanoparticles were comparatively studied. The morphology-dependent phenomenon is closely related to the nature of the exposed crystal planes. The CeO2 nanoparticles mainly expose the stable {1 1 1} plane on the surface, whereas the rod-shaped nanostructures preferentially expose the reactive {1 1 0} and {1 0 0} planes, giving higher oxygen storage capacity and catalytic activity for CO oxidation. Although both the CeO2 nanorods and the CeO2 nanowires predominantly expose the reactive {1 1 0} and {1 0 0} planes, the CeO2 nanowires favor to expose a large proportion of active planes on the surface, resulting in a much higher activity for CO oxidation than the nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号