首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(5):4330-4334
Yb2O3:Ho3+ nanocrystalline powders were synthesized through a solid state reaction method. X-ray diffraction analysis and field emission scanning electron microscopy were used to analyze the phase composition and morphology of the powders. Then under the 980 nm excitation of laser diode, the fluorescence of the crystals was studied via a fluorescence spectrometer. The green and red emissions centered on 551 and 668 nm were observed, and the green band dominated the emission spectrum. The effect of the concentration of Ho3+ on the upconversion luminescence intensity was discussed and the possible upconversion emission mechanism was explained. It indicates that like other metal oxide nanoparticles, Yb2O3 could also be a potential host material for doping to prepare the upconversion phosphor.  相似文献   

2.
A series of novel SrLu2O4: x Ho3+, y Yb3+ phosphors (x=0.005‐0.05, y=0.1‐0.6) were synthesized by a simple solid‐state reaction method. The phase purity, morphology, and upconversion luminescence were measured by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The doping concentrations and sintering temperature were optimized to be x=0.01, y=0.5 and T=1400°C to obtain the strongest emission intensity. Under 980 nm laser diode excitation, the SrLu2O4:Ho3+, Yb3+ phosphors exhibit intense green upconversion (UC) emission band centered at 541 nm (5F4,5S25I8) and weak red emission peaked at 673 nm (5F55I8). Under different pump‐power excitation, the UC luminescence can be finely tuned from yellow‐green to green light region to some extent. Based on energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the analysis of pump‐power dependence and luminescence decay curves. The energy‐transfer mechanisms for green and red UC emissions can be determined to be two‐photon absorption processes. Compared with commercial NaYF4:Er3+, Yb3+ and common Y2O3:Ho3+, Yb3+ phosphors, the SrLu1.49Ho0.01Yb0.5O4 sample shows good color monochromaticity and relatively high UC luminescence intensity. The results imply that SrLu2O4:Ho3+, Yb3+ can be a good candidate for green UC material in display fields.  相似文献   

3.
Ho3+/Yb3+ co-doped NaGdTiO4 phosphors were synthesized by a solid-state reaction method. The upconversion (UC) luminescence characteristics excited by 980 nm laser diode were systematically investigated. Bright green UC emission centered at 551 nm accompanied with weak red and near infrared (NIR) UC emissions centered at 652 and 761 nm were observed. The dependence of UC emission intensity on excitation power density showed that all of green, red and NIR UC emissions are involved in two-photon process. The UC emission mechanisms were discussed in detail. Concentration dependence studies indicated that Ho3+ and Yb3+ concentrations had significant influences on UC luminescence intensity and the intensity ratio of the red UC emission to that of the green one. Rate equations were established based on the possible UC mechanisms and a theoretical formula was proposed to describe the concentration dependent UC emission. The UC luminescence properties of the presented material was evaluated by comparing with commercial NaYF4:Er3+, Yb3+ phosphor, and our sample showed a high luminescence efficiency and good color performance, implying potential applications in a variety of fields.  相似文献   

4.
《Ceramics International》2020,46(11):18614-18622
Studies on lanthanide ions doped upconversion nanomaterials are increasing exponentially due to their widespread applications in various fields such as diagnosis, therapy, bio-imaging, anti-counterfeiting, photocatalysis, solar cells and sensors, etc. Here, we are reporting upconversion luminescence properties of NaBi(MoO4)2:Ln3+, Yb3+ (Ln = Er, Ho) nanomaterials synthesized at room temperature by simple co-precipitation method. Diffraction and spectroscopic studies revealed that these nanomaterials are effectively doped with Ln3+ ions in the scheelite lattice. DR UV–vis spectra of these materials exhibit two broad bands in the range of 200–350 nm correspond to MoO42− charge transfer, s-p transition of Bi3+ ions and sharp peaks due to f-f transition of Ln3+ ions. Upconversion luminescence properties of these nanomaterials are investigated under 980 nm excitation. Doping concentration of Er3+ and Yb3+ ions is optimized to obtain best upconversion photoluminescence in NaBi(MoO4)2 nanomaterials and is found to be 5, 10 mol % for Er3+, Yb3+, respectively. NaBi(MoO4)2 nanomaterials co-doped with Er3+, Yb3+ exhibit strong green upconversion luminescence, whereas Ho3+, Yb3+ co-doped materials show strong red emission. Power dependent photoluminescence studies demonstrate that emission intensity increases with increasing pump power. Fluorescence intensity ratio (FIR) and population redistribution ability (PRA) of 2H11/2 → 4I15/2, 4S3/2 → 4I15/2 transitions of Er3+ increases with increasing the Yb3+ concentration. Also, these values increase linearly with increasing the pump power up to 2 W. It reveal that these thermally coupled energy levels are effectively redistributed in co-doped samples due to local heating caused by Yb3+.  相似文献   

5.
Using a modified sol–gel method, LiLa(MoO4)2: Tm3+/Ho3+/Yb3+ phosphors with tailorable up‐conversion (UC) emission colors were prepared. Under the excitation of a 980 nm laser diode, up‐conversion red and green emissions in Ho3+/Yb3+ co‐doped and blue emission in Tm3+/Yb3+ co‐doped LiLa(MoO4)2 were observed, respectively. The intensities of the RGB (red, green, and blue) emissions could be controlled by varying concentrations of Tm3+ or Ho3+, and the optimal composition was also determined. In Tm3+/Ho3+/Yb3+ co‐doped LiLa(MoO4)2, the UC emission colors could be tuned from blue through white to yellow by adjusting the concentrations of Tm3+ or Ho3+. The UC excitation mechanisms were also investigated based on the power dependence of UC luminescence intensity.  相似文献   

6.
《Ceramics International》2017,43(8):6333-6339
As alternatives to Yb3+-sensitized up-conversion (UC) materials excited at 980 nm, Nd3+-sensitized UC phosphors irradiated by 808 nm have been used to decrease the absorption of water and alleviate the overheating effect in vivo biological application. Intense red and green UC emissions from 5F55I8 and 5F4/5S25I8 transitions of Ho3+ appeared in Nd3+/Yb3+/Ho3+ tri-doped NaLa(MoO4)2 through successive energy transfer Nd3+→Yb3+→Ho3+ under 808 nm excitation, in which Yb3+ ions were proven to be the energy transfer bridge between Nd3+ and Ho3+ by lifetime measurement. The variable emission color and intensity ratios of red to green emissions were realized by adjusting the doping concentration of Yb3+, pulse width of the excitation laser and the addition of Ce3+ ion, which depends on the different population pathways to the green and red emitting states of Ho3+. The chromaticity modulation mechanisms of these approaches were proposed, which provides a feasible strategy to tune the UC emission color.  相似文献   

7.
Uniform spindle-like micro-rods NaLa(WO4)2:Yb3+,Er3+ phosphors are prepared by the solvothermal method in the text. Controllable morphology of NaLa(WO4)2 crystal can be obtained by adjusting the prepared temperature, PH value, complexing agent content, and solvent ratio. Uniform NaLa(WO4)2:Yb3+,Er3+ micro-rods of 1.8 μm in length and 0.5 μm in width are synthesized at a low temperature of 120°C. The prepared NaLa(WO4)2:Yb3+,Er3+ phosphors present green upconversion luminescence under 980 nm excitation, luminescence intensity reaches to maximum at the Yb3+ and Er3+ concentration of 6 and 2 mol%. The temperature performance of the NaLa(WO4)2:Yb3+,Er3+ phosphors are evaluated based on thermal coupling technology. Temperature dependence of the two green emissions ratio of Er3+ ion is obtained, and the sensitivity of the sample can be calculated, the maximum sensitivity of NaLa(WO4)2:Yb3+,Er3+ is up to 0.019 K−1 at the sample temperature of 564 K.  相似文献   

8.
《Ceramics International》2016,42(4):4642-4647
Tunable up-conversion luminescent material KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) has been synthesized by a typical hydrothermal process. Under 980 nm laser diode (LD) excitation, the emission intensity and the corresponding luminescence colors of KY(MoO4)2: Yb3+, Ln3+ (Ln=Er, Tm, Ho) have been investigated in detail. The energy transfer from the Yb3+ sensitizer to Ho3+, Er3+ and Tm3+ activators plays an important role in the development of color-tunable single- phased phosphors. The emission intensity keep balance through control of the Ho3+ co-doping concentrations, white light was experimentally shown at KY(MoO4)2: 20 mol% Yb3+, 0.8 mol% Er3+, 0.5 mol% Tm3+, 1.0 mol% Ho3+ phosphor with further calcination at 800 °C for 4 h under 980 nm laser excitation. The color tunability, high quality of white light and high intensity of the emitted signal make these up-conversion (UC) phosphors excellent candidates for applications in solid-state lighting.  相似文献   

9.
Uniform and well‐crystallized NaGd(MoO4)2: Yb3+/Er3 + microcrystals with tetragonal plate morphology were synthesized by a facile hydrothermal method. The structure and phase purity of the samples were identified by powder XRD analysis. The steady‐state and transient luminescence spectra were measured and analyzed. Under 980 nm excitation, intense green luminescence at 531 and 553 nm, and red luminescence at 657 and 670 nm were observed. The optimum doping concentrations for Yb3+ and Er3+ are determined to be 20% and 1% in NaGd(MoO4)2 tetragonal plate microcrystals. With increasing Yb3+ doping concentrations, the total integral emission intensities increase first and then decrease. The red/green intensity ratio of NaGd(MoO4)2: Yb3+/Er3+ microcrystals increases from 0.4 to 1.0 with the increase in Yb3+ concentrations. Based on the energy level diagram, the energy‐transfer mechanisms are investigated in detail according to the double logarithmic plot of upconversion intensities versus pump powers. The energy‐transfer mechanisms for green and red upconversion luminescence are ascribed to two‐photon processes at lower Yb3+ concentrations, and involve high‐Yb3+‐induced one‐photon processes at higher Yb3+ concentrations. For the red upconversion luminescence, energy back‐transfer process, that is, 4S3/2 (Er3+) + 2F7/2 (Yb3+) → 4I13/2 (Er3+) + 2F5/2 (Yb3+), is dominant at higher Yb3+ concentrations. Theoretical model of the energy‐transfer mechanisms based on rate equations is established, which agrees well with the experimental results.  相似文献   

10.
《Ceramics International》2020,46(3):3015-3022
Ho3+ and Yb3+ codoped bismuth titanate (BTO) composite powders with infrared to visible upconversion luminescence (UCL) function were prepared by SGC method. The effects of Ho3+ and Yb3+ doping content on the structure and property were investigated for BTO: xHo, 0.2 Yb (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) and BTO: 0.02Ho, yYb (y = 0.1, 0.2, 0.3, 0.5, 0.7, 0.9) samples. All the samples include three bismuth titanate phases (Bi4Ti3O12, Bi2Ti2O7, and Bi20TiO32), and the phase proportion can be tuned by changing Ho3+ and Yb3+ doping content. These powders are well crystalized with honeycomb-like microscopic structure, and with good absorption for 233 nm, 310 nm and 975 nm wavelength. The band gap can be tuned from 3.53 eV to 4.03 eV when increasing Yb3+ content from y = 0 to y = 0.9. A strong 530–580 nm green emission band and a relative weak 630–690 nm red one corresponding to Ho3+: 5S25I8 and 5F55I8 transitions appear in the UCL spectra for all the BTO: Ho, Yb samples when pumped at 980 nm. The emission intensities can well be tuned with various Ho3+ and Yb3+ content. The optimal UCL was obtained in BTO: 0.02Ho, 0.5 Yb for all the prepared samples. The energy transfer mechanism is analyzed by building a two-photon energy transfer model, which is proved by the relationship between emission intensities and pumping power measurement. The concentration quenching of Ho3+ is caused by cross relaxation of CR1 and CR2 (Ho: 5F4, 5S2 + 5I85I4 + 5I7) and by CR3 (Ho: 5F4, 5S2 + Yb: 2F7/2 → Ho: 5I6 + Yb: 2F5/2) for Yb3+ quenching. The mean luminescence lifetime (τm) from Ho: 5S2 decreases monotonously with the increase of Ho3+ and Yb3+ content.  相似文献   

11.
In this paper, we study the influence of Cr3+ on yellowish-green upconversion (UC) emission and the energy transfer (ET) of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 (SZNL) zinc silicate glasses under excitation of the 980 nm laser diode (LD). The influence of Cr3+ on enhancing the red UC emission of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses under the excitation of 980nm LD was also investigated. The ET processes between Yb3+, Cr3+, and Er3+, together with the combination of Yb3+-Cr3+-Er3+, which led to the green UC emission intensity of Er3+/Cr3+/Yb3+ tri-doped in SiO2–ZnO–Na2O–La2O3 zinc silicate glasses bands centered at ~546 nm have been significantly enhanced. By increasing the concentration of Cr3+ from 0 up to 5 mol.%, we can locate the Commission Internationale de l'éclairage (CIE) 1931 (x; y) chromaticity coordinates for UC emissions of Er3+/Cr3+/Yb3+ tri-doped in the central position of the yellowish-green color region of CIE 1931 chromaticity diagram. Besides, the ET processes between the Yb3+, Cr3+, and Er3+ are also proposed and discussed.  相似文献   

12.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

13.
Infrared quantum cutting involving Yb3+ 950–1,000 nm (2 F5/22 F7/2) and Ho3+ 1,007 nm (5S2,5F45I6) as well as 1,180 nm (5I65I8) emissions is achieved in BaGdF5: Ho3+, Yb3+ nanoparticles which are synthesized by a facile hydrothermal route. The mechanisms through first- and second-order energy transfers were analyzed by the dependence of Yb3+ doping concentration on the visible and infrared emissions, decay lifetime curves of the 5 F55I8, 5S2/5F45I8, and 5 F35I8 of Ho3+, in which a back energy transfer from Yb3+ to Ho3+ is first proposed to interpret the spectral characteristics. A modified calculation equation for quantum efficiency of Yb3+-Ho3+ couple by exciting at 450 nm was presented according to the quantum cutting mechanism. Overall, the excellent luminescence properties of BaGdF5: Ho3+, Yb3+ near-infrared quantum cutting nanoparticles could explore an interesting approach to maximize the performance of solar cells.  相似文献   

14.
《Ceramics International》2020,46(5):6276-6283
In this study, novel Eu3+-, Dy3+-, and Sm3+-activated Na3La(VO4)2 phosphors were synthesized using a solid state reaction method. X-ray diffraction analysis results indicated that the Na3La(VO4)2 phosphors had an orthorhombic crystal structure with the Pbc21 space group. There were two different La(1)O8 and La(2)O8 polyhedra with high asymmetry in the crystal structure. Scanning electron microscopy revealed that the product had a sheet morphology with an irregular particle size. Further, the luminescence properties, including the excitation and emission spectra, and luminescence decay curve, were investigated using a fluorescence spectrometer. The results showed that the Na3La(VO4)2 compound was an excellent host for activating the luminescence of Eu3+ (614 nm), Dy3+ (575 nm), and Sm3+ (647 nm) ions. Further, Dy3+/Eu3+ co-doped Na3La(VO4)2 phosphors were exploited, and the energy transfer from Dy3+ to Eu3+ was demonstrated in detail by the photoluminescence excitation, photoluminescence spectra, and luminescent decay curves. The results showed that the energy transfer efficiency from Dy3+ to Eu3+ was highly efficient, and the energy transfer mechanism was dipole–dipole interactions. Finally, tunable emissions from the yellow region of CIE (0.3925, 0.4243) to the red region of CIE (0.6345, 0.3354) could be realized by rationally controlling the Dy3+/Eu3+ concentration ratio. These phosphors may be promising materials for the development of solid-state lighting and display systems.  相似文献   

15.
Novel up‐conversion (UC) luminescent nanopowders, Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) were prepared with Pechini method. The Sr2CeO4:Yb3+,Ln3+ (Ln = Er, Tm, Ho) nanopowders had an orthorhombic crystal structure, and showed olive‐like morphology with the length of about 260 nm and width of about 130 nm. Under 980 nm lazer excitation, the Sr2CeO4:Yb3+/Er3+, Sr2CeO4:Yb3+/Tm3+, and Sr2CeO4:Yb3+/Ho3+ nanophosphors exhibit strong green, blue, and green UC luminescence, respectively. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

16.
Pure and Eu3+‐activated Ca4La(VO4)3O phosphors were prepared via three‐step solid‐phase synthesis. The phase formation and structure were investigated by X‐ray diffraction (XRD) with Rietveld refinements. All the samples crystallized in an apatite‐type structure. The morphological properties were measured via by SEM and EDS measurements. Ca4La(VO4)3O is a new vanadate optical material with a direct band feature and a band energy of 3.1 eV. The undoped Ca4La(VO4)3O phosphor presents self‐activated yellow luminescence from 400 nm to 750 nm with a maximum wavelength of 525 nm originating from VO4 groups. Luminescence characteristics of Ca4La(VO4)3O indicate that the phosphor is not sufficient for practical applications. In Eu3+‐activated Ca4La(VO4)3O, there is an efficient energy transfer from VO4 to Eu3+ ions. The luminescence spectra, concentration quenching, decay curves, color chromaticity, and quantum efficiencies (QE) of Ca4La(VO4)3O:Eu3+ were investigated. The phosphor presents optimal Eu3+ doping concentration of about 20 mol%. The dominant red emission in Ca4La(VO4)3O:Eu3+ is 615 nm from electronic 5D07F2 dipole transitions. The quantum efficiency and the luminescence stability of the pure and Eu‐activated Ca4La(VO4)3O were reported. The luminescence was discussed on the structural characteristics.  相似文献   

17.
Luminescent readout capability for photochromic materials plays a critical role in 3D optical data storage applications, especially for inorganic photochromic materials in the solid‐state form. In our previous studies, we found that the luminescent readout capability can be improved using two or multiple‐photon excited luminescent mode (upconversion), which can effectively decrease the destruction degree of the excitation energies to the stored information during the luminescent “reading” process. However, the luminescent readout performance is unsatisfactory owing to the absence of nondestructive luminescence readout capability. Herein, we report a new solid‐state photochromic material with excellent upconversion readout capability: Ho3+/Yb3+ codoped (K,Na)NbO3. Upon 407 nm light irradiation, the luminescent switching contrast (ΔRt) is up to 78%. Particularly, the materials almost have no any re‐absorption to 980 nm light, exhibiting extremely low destruction to information recording points. The luminescent readout intensity retains 96% after constant 980 nm irradiation for 4 minutes at a high pumping power of 1W, which is superior to our previously reported results (Er/Yb codoped Bi2.5Na0.5Nb2O9 materials). This work would help to further develop new inorganic photochromic materials with high performance to satisfy the requirements for optical storage devices.  相似文献   

18.
《Ceramics International》2019,45(10):13235-13241
Yb3+:Ho3+ co-doped Gd2O3 nanoparticles were successfully synthesized by pulsed laser ablation in water under different laser energy. The phase structure, morphology, crystallization and upconversion photoluminescence properties of obtained samples were investigated using X-Ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and photoluminescence spectra. The mechanism of the upconversion process was discussed based on the energy level diagram and power dependent upconversion emission. Upconversion mechanisms and thermal effects caused by absorption of excitation laser were discussed. Temperature dependent green and red emissions of Yb3+:Ho3+ co-doped Gd2O3 nanoparticles under the excitation of 980 nm were investigated in the low temperature range of 130 K–280 K. Non-radiative decay rate theory was used to explain the difference of quenching rates of green and red emissions. A further study on temperature sensing properties based on fluorescence intensity ratio (FIR) of green and red emissions was carried out. The FIR as a function of temperature can be well fitted by the model based on the thermal quenching theory. The relative sensitivity reaches its maximum value of 0.804% K−1 at 216 K.  相似文献   

19.
《Ceramics International》2019,45(11):14205-14213
Monoclinic phase of BaY2F8:0.2Yb3+, xHo3+ (x = 0.005, 0.01, 0.02, 0.05 and 0.1 mol) and BaY2F8:yYb3+, 0.02Ho3+ (y = 0.01, 0.02, 0.05, 0.1 and 0.2 mol) phosphors were prepared by a facile precipitation method. Rietveld analysis was employed to carry out the structural refinement. The upconversion (UC) luminescence properties of BaY2F8:Yb3+, Ho3+ phosphor were investigated under near infra-red (NIR) excitation and the influence of dopant concentration on their spectra was also accessed. The possible UC processes and the energy transfer mechanisms between Yb3+ and Ho3+ were discussed on the basis of UC decay curves and the UC spectra obtained from a laser-pump power variation. The thermal stability of the BaY2F8:0.2Yb3+, 0.02Ho3+ phosphor was studied in the range of 30–300 °C. The color coordinates of the phosphor were located in the green region with very high color purity.  相似文献   

20.
Spectral conversion technology based on NaYF4:Yb3+, Er3+ upconversion nanoparticles was extensively used to improve photovoltaic conversion efficiency of solar cells. However, the response mismatch between absorption of semiconductors and upconversion luminescence (UCL) limits the application of spectral conversion technology. Nonstoichiometric WO2.72 nanoparticles display the broad absorption from visible to near-infrared region due to the presence of oxygen vacancy, which is overlapped with the UCL of NaYF4:Yb3+, Er3+ nanoparticles. Thus, the combination between NaYF4:Yb3+, Er3+ nanoparticles, and nonstoichiometric WO2.72 provides a possibility for designing a novel UCL spectral converted solar cells. In this work, composite film consisted of NaYF4:Yb3+, Er3+ nanoparticles, and WO2.72 nanofibers was prepared. The UCL of NaYF4:Yb3+, Er3+/WO2.72 film was decreased in contrast to pure NaYF4:Yb3+, Er3+ nanoparticles due to energy transfer from NaYF4:Yb3+, Er3+ nanoparticles to WO2.72 nanofibers. The NaYF4:Yb3+, E3+/WO2.72film exhibits the photocurrent generation upon the 980 nm excitation. This novel UCL spectral converted solar cells based on the broad absorption of defects in the WO2.72 host will provide a novel view for photovoltaic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号