首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
A new borate phosphor NaBaY(BO3)2: Ce3+, Tb3+ (NBY:Ce3+, Tb3+) was successfully synthesized under low temperature designed to put into application in the fields of ultraviolet (UV)‐excited light emitting diodes (LEDs) and field emission displays (FEDs). The structure distortion between Ce3+, Tb3+ single‐ and co‐doping NBY was discussed by X‐ray powder diffraction Rietveld refinement, high‐resolution transmission electron microscopy (HRTEM) and spectra. NBY: Ce3+, Tb3+ presents a wide absorption band ranging from 310 to 400 nm and efficient green emission (λmax = 542 nm) with a full‐width at half‐maximum of 3.3 nm. The remarkable thermal stability has also been tested, indicating that the intensity at 200°C is still beyond 70% of the original intensity. In addition, a white LED device was manufactured by connecting a 370 nm UV chip with a blend of BaMaAl10O17: Eu2+ (BAM: Eu2+), NBY: Ce3+, Tb3+ and CaAlSiN3: Eu2+. The color coordinate, correlated color temperature and color rendering index of the manufactured LED device were (0.335, 0.347), 5511 K and 80.16, respectively. Meanwhile, the cathodoluminescence (CL) spectra under the various conditions of probe currents and accelerating voltages were also analyzed. Through successive excitation of low‐voltage electron‐beam, the wonderful performances of degradation property and color stability were obtained. These results suggest that the green‐emitting NBY: Ce3+, Tb3+ phosphor has the prospect of becoming applications in white UV LEDs and FEDs.  相似文献   

2.
《Ceramics International》2015,41(7):8988-8995
A series of white-light-emitting phosphors of single-phase Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ were synthesized by conventional solid-state reaction. The crystal structure of the host was characterized by X-ray diffraction and investigated by Rietveld refinement. Photoluminescence properties were studied in detail. The energy transfer from Ce3+ to Tb3+ in Ba2Mg(BO3)2 host was investigated and demonstrated to be a resonant type via a quadrupole–quadrupole mechanism. White light with wavelength tunable was realized by coupling the emission bands peaking at 417, 543 and 626 nm attributed to Ce3+, Tb3+ and Eu2+, respectively. By properly tuning the relative composition of Ce3+(Na+)/Tb3+/Eu2+, optimized Commission Internationale de l׳Eclairage (CIE) chromaticity coordinates (0.363, 0.295), high color rendering index (CRI) 90 and low correlated color temperature (CCT) 3793 K were obtained from the phosphor of Ba1.90Ce0.04Na0.04Eu0.02Mg0.94Tb0.06(BO3)2 upon the excitation of 296 nm UV radiation. These results indicate that Ba2Mg(BO3)2:Ce3+, Na+, Tb3+, Eu2+ phosphor has a potential application as an UV radiation down-converting phosphor in white-light-emitting diodes.  相似文献   

3.
A series of Ce3+, Tb3+, Eu3+ tri‐doped Ba2Y(BO3)2Cl red‐emitting phosphor have been synthesized by solid‐state method. The Ce3+→Tb3+→Eu3+ energy‐transfer scheme has been proposed to realize the sensitization of Eu3+ ion emission by Ce3+ ions. Following this energy‐transfer model, near‐UV convertible Eu3+‐activated red phosphors have been obtained in Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ phosphors. Energy transfers from Ce3+ to Tb3+, and Tb3+ to Eu3+, as well as corresponding energy‐transfer efficiencies are investigated. The combination of narrow‐line red emission and near‐UV broadband excitation makes Ba2Y(BO3)2Cl: Ce3+, Tb3+, Eu3+ as a novel and efficient red phosphor for NUV LED applications.  相似文献   

4.
Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were synthesized by the solid-state method. X-ray diffraction (XRD) was used to characterize the phase structure. The luminescent properties of Ce3+ and Tb3+ co-doped Sr2B2O5 phosphors were investigated by using the photoluminescence emission, excitation spectra and reflectance spectra, respectively. The excitation spectra indicate that this phosphor can be effectively excited by near ultraviolet (n-UV) light of 317 nm. Under the excitation of 317 nm, Sr2B2O5:Ce3+,Tb3+ phosphors exhibited blue emission corresponding to the fd transition of Ce3+ ions and green emission bands corresponding to the ff transition of Tb3+ ions, respectively. The Reflectance spectra of the Sr2B2O5:Ce3+,Tb3+ phosphors are noted that combine with Ce3+ and Tb3+ ion absorptions. Effective energy transfer occurred from Ce3+ to Tb3+ in Sr2B2O5 host due to the observed spectra overlap between the emission spectrum of Ce3+ ion and the excitation spectrum of Tb3+ ion. The energy transfer efficiency from Ce3+ ion to Tb3+ ion was also calculated to be 90%. The phosphor Sr2B2O5:Ce3+,Tb3+ could be considered as one of double emission phosphor for n-UV excited white light emitting diodes.  相似文献   

5.
A series of color tunable Tb3+‐ and Eu3+‐activated Sr2P2O7 phosphors were synthesized by a traditional solid‐state reaction method in air atmosphere. The crystal structure, photoluminescence (PL) properties, energy transfer, thermal stability, and luminous efficiency were investigated. A series of characteristic emission of Tb3+ and Eu3+ were observed in the PL spectra and the variation in the emission intensities of the three emission peaks at around 416 nm (blue), 545 nm (green), and 593 nm (orange‐red) induced the multicolor emission evolution by tuning the Tb3+/Eu3+ content ratio. The energy‐transfer mechanism from Tb3+ to Eu3+ ion was determined to be dipole–dipole interaction, and the energy‐transfer efficiency was about 90%. The novel phosphors have excellent thermal stability in the temperature range of 77–473 K and the Commission International De L'Eclairage 1931 chromaticity coordinates of Sr2P2O7: Tb3+, Eu3+ex = 378 nm) move toward the ideal white light coordinates.  相似文献   

6.
LiCaAlN2:Eu3+/Tb3+ red/green phosphors were successfully prepared by conventional solid‐state reaction. The photoluminescence (PL) properties and cathodoluminescence (CL) properties of LiCaAlN2:Eu3+/Tb3+ were investigated in detail. The Eu3+ (Tb3+) doped LiCaAlN2 shows red (green) emission peaking at 615 nm (550 nm). Monitored at 615 nm (550 nm), it is interesting to found that LiCaAlN2:Eu3+ (LiCaAlN2:Tb3+) has a broad charge transfer transition in the range of 350‐450 nm (275‐375 nm) peaking at 380 nm (343 nm), which can be efficiently excited by n‐UV light‐emitting diodes (LEDs). Under electron beam excitation, LiCaAlN2:Tb3+ exhibited a good resistance to the current saturation. The white LED has also been fabricated with blue, green, and LiCaAlN2:Eu3+ red phosphor. The results indicate that LiCaAlN2:Eu3+/Tb3+ could be conducive to the development of phosphor‐converted LEDs and field emission displays (FEDs).  相似文献   

7.
This work presents the ultraviolet–visible spectroscopic properties of Ba3Y2(BO3)4:Ce3+,Tb3+ phosphors prepared by a high‐temperature solid‐state reaction. Under ultraviolet light excitation, tunable emission from the blue to yellowish‐green region was obtained by changing the doping concentration of Tb3+ when the content of Ce3+ is fixed. The efficient energy transfer process between Ce3+ and Tb3+ ions was observed and confirmed in terms of corresponding excitation and emission spectra. In addition, the energy transfer mechanism between Ce3+ and Tb3+ was proved to be dipole–dipole interaction in Ba3Y2(BO3)4:Ce3+,Tb3+ phosphor. By utilizing the principle of energy transfer and appropriate tuning of Ce3+/Tb3+ contents, Ba3Y(BO3)4:Ce3+,Tb3+ phosphors can have potential application as an UV‐convertible phosphor for near‐UV excited white light‐emitting diodes.  相似文献   

8.
A series of newly developed color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors were successfully prepared in this study. The crystal structures of the prepared phosphors were revealed to be hexagonal with space group P63/m, and the lattice parameters were evaluated via utilizing the Rietveld refinement method. Upon excitation at 288 nm, the emission spectra of Ce3+and Tb3+ ions co‐doped Ca3La6(SiO4)6 phosphors included a blue emission band and several emission lines. The blue emission band with a peak at 420 nm originated in the fd transitions of Ce3+ ions, and the emission lines in the range of 450–650 nm were assigned to the 5D4 → 7FJ (J = 6, 5, 4, 3) transitions of Tb3+ ions. Increasing the doping content of Tb3+ ions considerably strengthened Tb3+ emission and reduced Ce3+ emission owing to the energy transfer from Ce3+ to Tb3+ ions. The mechanism of the energy transfer was confirmed to be a dipole–dipole interaction. The effective energy transfer from Ce3+ to Tb3+ ions caused a color shift from purplish‐blue to yellowish‐green. Color‐tunable Ca3La6(SiO4)6: Ce3+, Tb3+ phosphors have the potential to be utilized in light‐emitting diodes with proper modulation of the amount of Tb3+ ions.  相似文献   

9.
Ce3+/Tb3+ co-doped NaMgBO3 phosphors were successfully synthesized by solid-state method. Under 381 nm excitation, the cyan emission owing to the 5d → 4f of Ce3+ ions and green emissions arising from the 5D4 → 7FJ (J = 6, 5, 4, and 3) transitions of Tb3+ ions were seen in all the phosphors. Through theoretical analysis, one knows that the energy transfer from Ce3+ to Tb3+ ions with high efficiency of 83.74% was contributed by dipole–dipole transition. Furthermore, the internal quantum efficiency of NaMgBO3:0.01Ce3+,0.03Tb3+ phosphor was 54.28%. Compared with that of at 303 K, the emission intensity of the developed products at 423 K still kept 73%, revealing the splendid thermal stability of the studied phosphors. Through utilizing the resultant phosphors as cyan-green components, the fabricated white-LED device exhibited an excellent correlated color temperature of 2785 K, high color-rendering index of 85.73, suitable luminance efficiency of 25.00 lm/W, and appropriate color coordinate of (0.4279, 0.3617). Aside from the superior photoluminescence, the synthesized phosphors also exhibited excellent cathode-luminescence properties which were sensitive to the current and accelerating voltage. Furthermore, the NaMgBO3:0.01Ce3+,0.03Tb3+ phosphors with multi-mode emissions were promising candidates for optical anti-counterfeiting. All the results indicated that the Ce3+/Tb3+ co-doped NaMgBO3 phosphors were potential multi-platforms toward white-LED, field emission displays, and optical anti-counterfeiting applications.  相似文献   

10.
The rare earth (RE = Eu and Tb) ions‐doped α‐Zr(HPO4)2 (ZrP) nanosheet phosphors were synthesized by direct precipitation method, and their structures and photoluminescence properties were investigated. The results of X‐ray diffraction and scanning electron microscopy indicated that the systems of ZrP:RE3+ had similar nanosheet structure except with relatively larger interlayer spacing as compared with pure α‐ZrP. Under the excitation of UV light, the ZrP:RE3+ nanosheet phosphors showed red and green emission peaks corresponding to the 5D07F2 transition of Eu3+ and the 5D47F5 transition of Tb3+, respectively. After Eu3+ and Tb3+ were co‐doped in ZrP host, not only the red and green emission peaks were simultaneously observed, but also the luminescent intensity and fluorescence lifetimes of Tb3+ were gradually decreased with the increase in Eu3+‐doping concentration, which implied the energy transfer from Tb3+ to Eu3+ happened. It was deduced that the energy transfer from Tb3+ to Eu3+ occurred via exchange interaction. Through optimization to the samples, a nearly white‐light emission with the color coordinate (0.322, 0.263) was achieved under 377 nm excitation. The ZrP:RE3+ nanosheet phosphors may be a potential color‐tailorable candidate for fabricating optoelectronic devices such as electroluminescence panels.  相似文献   

11.
A series of single-component blue, green and red phosphors have been fabricated based on the Ca3Gd(GaO)3(BO3)4 host through doping of the Ce3+/Tb3+/Eu3+ ions, and their crystal structure and photoluminescence properties have been discussed in detail. A terbium bridge model via Ce3+ → Tb3+ → Eu3+ energy transfer has been studied. The emission colours of the phosphors can be tuned from blue (0.1661, 0.0686) to green (0.3263, 0.4791) and eventually to red (0.5284, 0.4040) under a single 344 nm UV excitation as the result of the Ce3+ → Tb3+ → Eu3+ energy transfer. The energy transfer mechanisms of Ce3+ → Tb3+ and Tb3+ → Eu3+ were found to be dipole-dipole interactions. Importantly, Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors had high internal quantum efficiency. Moreover, the study on the temperature-dependent emission spectra revealed that the Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors possessed good thermal stability. The above results indicate that the phosphors can be applied into white light-emitting diodes as single-component multi-colour phosphors.  相似文献   

12.
Using the solid‐state reaction method, Ce3+,Tb3+‐coactivated Si5AlON7 (Si6?zAlzOzN8?z, = 1) phosphors were successfully synthesized. The obtained phosphors exhibit high absorption and strong excitation bands in the wavelength range of 240–440 nm, matching well with the light emitting‐diode (LED) chip. The ET from Ce3+ to Tb3+ ions in Si5AlON7:Ce3+,Tb3+ has been studied and demonstrated by the luminescence spectra and decay curves. Moreover, the phosphors show tunable emissions from blue to green by tuning the relative ratio of the Ce3+ to Tb3+ ions. Thermal quenching properties of Si5AlON7:Ce3+,Tb3+ had also been investigated and the quenching temperature is ~190°C. These results show that Si5AlON7:Ce3+,Tb3+ could be a promising candidate for a single‐phased color‐tunable phosphor applied in UV‐chip pumped LEDs.  相似文献   

13.
High-efficient Ce3+/Tb3+ co-doped Ba3Y2B6O15 phosphors with multi color-emitting were firstly prepared, and their structural and luminescent properties were studied by XRD Rietveld refinement, emission/excitation spectra, fluorescence lifetimes as well as temperature-variable emission spectra. Upon 365?nm excitation, the characteristic blue Ce3+ band along with green Tb3+ peaks were simultaneously found in the emission spectra. Moreover, by increasing concentration of Tb3+, a blue-to-green tunable emitting color could be realized by effective Ce3+→Tb3+ energy transfer. Furthermore, all Ba3Y2B6O15: Ce3+, Tb3+ phosphors exhibit high internal quantum efficiency of ~?90%, while the temperature-variable emission spectra reveal that the phosphors possess impressive color stability as well as good thermal stability (T50 =?~?120?°C). The results indicate that these efficient color-tuning Ba3Y2B6O15: Ce3+, Tb3+ might be candidate as converted phosphor for UV-excited light-emitting diodes.  相似文献   

14.
A novel apatite-type SrMgY3(SiO4)3F was synthesized by a high-temperature solid-state reaction. The crystal structure was refined using powder X-ray diffraction data. SrMgY3(SiO4)3F crystallizes in P63/m hexagonal space group with lattice parameters of a = b = 9.45270 Å, c = 6.77617 Å, and V = 524.357 Å3. The incorporation of the Ce3+ and Tb3+ ions into the matrix can generate bright blue and green lights under ultraviolet (UV) light excitation. The codoped Ce3+ and Tb3+ in SrMgY3(SiO4)3F can effectively improve green emission intensity and thermal stability through the energy transfer from the Ce3+ to Tb3+ ions. With the increase of Tb3+-doping content, the luminescent color of phosphor changes from blue to cyan and finally to green. SrMgY3(SiO4)3F:0.06Ce3+,0.90Tb3+ phosphor exhibited intense green light emission with a quantum yield of 59.49% and good thermal stability, with an emission intensity at 150°C was 96% of that at 30°C. Finally, the prepared sample was coated on 365 nm UV chips to fabricate white light-emitting diodes with a color rendering index of 82.6 and a correlated color temperature of 2912 K, demonstrating its potential for applications in display and lighting.  相似文献   

15.
Pyroxene-type phosphors were widely developed due to the advantages of high chemical stability, luminous efficiency, and low production cost. In this contribution, a series of Eu2+/Tb3+ co-doped Ca0.75Sr0.2Mg1.05Si2O6 (CSMS) phosphors with pyroxene structure were successfully synthesized by the solid-state method. Under the 340 nm excitation, the emission peaks of the phosphor show a redshift with the increase of Eu2+ concentration. The emitting color of Eu2+/Tb3+ co-doped samples shows a redshift attributed to the energy transfer from Eu2+ to Tb3+. Simultaneously, acquired thermometer exposes superbly temperature-sensitive properties (Sa and Sr having maximum values 4.7% K−1 and 0.6% K−1, respectively) over the cryogenic temperature range (77–280 K). Furthermore, it has good stability and precision at cryogenic temperatures, indicating that CSMS:0.03Eu2+/0.03Tb3+ phosphor is a very promising fluorescent material suitable for cryogenic temperature sensing.  相似文献   

16.
Tb3+‐doped and Eu2+, Tb3+ co‐doped Ca9Y(PO4)7 phosphors were synthesized by conventional solid‐state method. Additionally, the luminescence properties, decay behavior and energy transfer mechanism have already been investigated in detail. The green emission intensity of Tb3+ ions under NUV excitation is weak due to its spin‐forbidden f‐f transition. While Eu2+ can efficiently absorb NUV light and yield broad blue emission, most of which can be absorbed by Tb3+ ions. Thus, the emission color can be easily tuned from cyan to green through the energy transfer of Eu2+→Tb3+ in Ca9Y(PO4)7:Eu2+,Tb3+ phosphor. In this work, the phenomenon of cross‐relaxation between 5D3 and 5D4 are also mentioned. The energy transfer is confirmed to be resulted from a quadrupole‐quadrupole mechanism.  相似文献   

17.
《Ceramics International》2017,43(18):16323-16330
The tricolor-emitting MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors for ultraviolet-LED have been prepared via a high-temperature solid-state method. X-ray diffraction, photoluminescence emission, excitation spectra and fluorescence lifetime were utilized to characterize the structure and the properties of synthesized samples. Two different lattice sites for Ce3+ are occupied from the host structure and the normalized PL and PLE spectra. The emissions of single-doped Ce3+/Tb3+/Eu3+ are located in blue, green and red region, respectively. The energy transfer from Ce3+ to Tb3+ and from Tb3+ to Eu3+ has been validated by spectra and decay curves and the energy transfer mode from Tb3+ to Eu3+ was calculated to be electric dipole-dipole interactions. By adjusting the content of Tb3+ and Eu3+ in MgY4Si3O13: Ce3+, Tb3+, Eu3+, the CIE coordinates can be changed from blue to green and eventually generate white light under UV excitation. All the results indicate that the MgY4Si3O13: Ce3+, Tb3+, Eu3+ phosphors are potential candidates in the application of UV-WLEDs.  相似文献   

18.
A series of Ce3+ and Tb3+ singly- and co-doped NaBa4(AlB4O9)2Cl3 (NBAC) phosphors have been synthesized via high-temperature solid state route. The crystal structure, morphology, photoluminescent properties, thermal properties and energy transfer process between Ce3+ and Tb3+ were systematically investigated. The structure refinements indicated that the phosphors based on NBAC crystallized in P42nm polar space group in monoclinic phase. The emission color could be tuned from blue (0.1595, 0.0955) to green (0.2689, 0.4334) via changing the ratio of Ce3+/Tb3+. The energy transfer mechanism of Ce3+/Tb3+ was verified to be dipole–quadrupole interaction via the examination of decay times of Ce3+ based on Dexter's theory. The good thermal stability showed the intensities of Ce3+ at 150°C were about 66.9% and 64.88% in NBAC:0.09Ce3+ and NBAC:0.09Ce3+, 0.07Tb3+ of that at room temperature, and the emission intensities of Tb3+ remained 102.41% in NBAC:0.11Tb3+ and 95.22% in NBAC:0.09Ce3+, 0.07Tb3+ due to the nephelauxetic shielding effect and the highly asymmetric rigid framework structure of NBAC. The maximum external quantum efficiency (EQE) of Ce3+ in NBAC:0.09Ce3+, yTb3+ phosphors could reach 43.38% at y = 0.13. Overall, all the results obtained suggested that NBAC:Ce3+, Tb3+ could be a promising option for n-UV pumped phosphors.  相似文献   

19.
Novel blue‐green emitting Ce3+‐ and Tb3+‐activated K2CaP2O7 (KCPO) luminescent materials were synthesized via a solid‐state reaction method. X‐ray diffraction, luminescence spectroscopy, decay time, and fluorescent thermal stability tests have been used to characterize the prepared samples. The KCPO:Ce3+,Tb3+ luminescence spectra show broad band of Ce3+ ions and characteristic line of Tb3+ ion transition (5D47F5). The color variation in the light emitting from blue to green under UV excitation can be obtained by tailoring the Tb3+ content in KCPO:Ce3+. Besides, Ce3+ ions obviously intensify Tb3+ ion emission through an effective energy transfer process, which was confirmed from decay curves. The energy transfer efficiency was determined to be 82.51%. A resonant type mechanism via the dipole–quadrupole interaction can be proposed for energy transfer. As a whole, the KCPO:Ce3+,Tb3+ phosphor exhibits excellent performance in the range from 77 to 673 K, indicating the phosphors are highly potential candidates for solid‐state lighting.  相似文献   

20.
The development of high-performance phosphors is required for phosphor-converted white light-emitting diodes. However, most approaches are unable to achieve optimum emission intensity and thermal quenching simultaneously. Here, a series of CaAlSiN3:Eu2+ (CASN:Eu2+) red-emitting phosphors doped with B were synthesized using field-assisted sintering technology. Compared with CASN:Eu2+, the B-doped phosphor exhibited high external quantum efficiency (EQE) and good thermal quenching performance. With boron doping, the EQE of CaAlSiN3:Eu2+ shows an obvious growth, increasing from 48.83% to 70.68%. Meanwhile, thermal quenching performance has also been greatly improved, which is strongly associated with the band structure of Eu2+ and the crystal structure of CASN. The location of B in the crystal lattice was studied and the mechanism of improving thermal quenching via B doping was discussed in detail. Finally, a white LED fabricated by the combination of a GaN blue chip (450 nm) with the as-synthesized red phosphors and Y3(Al, Ga)5O12:Ce3+ green phosphors (531 nm), shows a high color rendering index (Ra =91.6). This study offers a novel method to improve luminescence properties of CASN:Eu2+ red-emitting phosphors, which may broaden their application in solid-state lighting devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号