首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sr0.8Na0.4Nb2O6 with a tungsten bronze structure is introduced into perovskite-structured 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 composition (abbreviated as BNT-BT-xSNN, x = 0-0.04). The temperature stability of dielectric properties and energy storage performance is found to be effectively enhanced by Sr0.8Na0.4Nb2O6 dopant. When x is 0.03, the temperature ranges covering |ε'-ε'150°C|/ε'150°C ≤15% and tanδ ≤ 0.02 are 43°C-404°C and 90°C-422°C, respectively. More importantly, ε′ can be retained as high as 3304 at 150°C. Besides, the variances of energy storage density and its efficiency are 6.4% and 5.3%, respectively, in the temperature range from room temperature (RT) to 180°C. Therefore, this work provides a new method of compositional modification in BNT-based materials to improve their temperature stability of dielectric and energy storage properties.  相似文献   

2.
《应用陶瓷进展》2013,112(7):435-442
Nb-doped 0.90BaTiO3-0.10(Bi0.5Na0.5)TiO3 temperature-insensitive ceramics with novel core-shell structure were sintered at low temperature by the conventional solid-state reaction method. The beneficial role of Nb in facilitating the formation of core-shell structure because of chemical inhomogeneity is verified, which is responsible for the weak temperature dependence of dielectric properties. Temperature dependence of permittivity measured at different frequencies shows high frequency dispersion at low temperature, while without relaxor characteristic at high temperature. The Vogel–Fulcher model was adopted to study the relaxor behaviour of Nb-doped 0.90BaTiO3-0.10(Bi0.5Na0.5)TiO3 ceramics at low temperature. The samples with an addition of 1.5?mol% Nb2O5 provide a temperature coefficient of capacitance meeting the requirements of the X9R characteristic, and result exhibits an optimum dielectric behaviour of εr ~1900, tanδ ~1.8% at room temperature, making the material a promising candidate for high temperature applications.  相似文献   

3.
Na0.5Bi0.5TiO3-BaTiO3 (NBT-BT)-based lead-free piezoelectric ceramics have been actively studied in recent years as a potential replacement for lead-based materials in ultrasonic applications. However, its relatively low thermal depolarization temperature (Td) is still an imperative obstacle hindering implementation in practical application. Recently, it was reported that quenching is an effective way to improve Td of NBT-based ceramics, but the essential mechanism is still unclear. In this study, 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (NBT-6BT) ceramics were quenched in air and liquid nitrogen, and then annealed in oxygen and nitrogen atmospheres to explore the origin of enhanced depolarization temperature. The results from this study correlate the enhancement of Td to the residual stress, which induces a stable rhombohedral ferroelectric phase, thereby increasing the thermal depolarization temperature of NBT-6BT. Our results indicate that the residual stress is also an important factor influencing the electrical properties of quenched piezoelectric ceramics, which should be given more attention in future studies.  相似文献   

4.
The donor-acceptor co-doping grain-fine BaTiO3-0.5wt%Na0.5Ba0.5TiO3 (BT-0.5wt%NBT) ceramics are obtained by conventional solid-state reaction method and sintered in different atmospheres. The dielectric properties are sensitively influenced by the sintering atmosphere, which the colossal permittivity can be activated and increased by enhanced atmospheric reducibility with the increase of H2 content. However, the excessive H2 content can make a significant deterioration in dielectric loss and insulation resistivity. The impedance spectra, XPS and EPR measurements indicate that sintering atmosphere can effectively regulate the concentration and distribution of charge carriers (delocalized electrons, oxygen vacancies and defects), which induce the interfacial polarization and hopping polarization. When sintered in 0.1% H2/N2, the sample possesses a relatively good comprehensive performance with colossal permittivity (εγ>4×104), ultra-low dielectric loss (tanδ=0.0218) and high insulation resistivity (ρv>1011Ω·cm), which related to the moderate values of resistance and conduction activation energy for the grain boundaries.  相似文献   

5.
0.94(Na0.5Bi0.5+x)TiO3–0.06BaTiO3 (x = ?0.04, 0, 0.02; named NB0.46T‐6BT, NB0.50T‐6BT, NB0.52T‐6BT, respectively) lead‐free piezoelectric ceramics were prepared via the solid‐state reaction method. Effects of Bi3+ nonstoichiometry on microstructure, dielectric, ferroelectric, and piezoelectric properties were studied. All ceramics show typical X‐ray diffraction peaks of ABO3 perovskite structure. The lattice parameters increase with the increase in the Bi3+ content. The electron probe microanalysis demonstrates that the excess Bi2O3 in the starting composition can compensate the Bi2O3 loss induced during sample processing. The size and shape of grains are closely related to the Bi3+ content. For the unpoled NB0.50T‐6BT and NB0.52T‐6BT, there are two dielectric anomalies in the dielectric constant–temperature curves. The unpoled NB0.46T‐6BT shows one dielectric anomaly accompanied by high dielectric constant and dielectric loss at low frequencies. After poling, a new dielectric anomaly appears around depolarization temperature (Td) for all ceramics and the Td values increase with the Bi3+ amount decreasing from excess to deficiency. The diffuse phase transition character was studied via the Curie–Weiss law and modified Curie–Weiss law. The activation energy values obtained via the impedance analysis are 0.69, 1.05, and 1.16 eV for NB0.46T‐6BT, NB0.50T‐6BT and NB0.52T‐6BT, respectively, implying the change in oxygen vacancy concentration in the ceramics. The piezoelectric constant, polarization, and coercive field of the ceramics change with the variation in the Bi3+ content. The Rayleigh analysis suggests that the change in electrical properties of the ceramics with the variation in the Bi3+ amount is related to the effect of oxygen vacancies.  相似文献   

6.
A‐site substituted 0.88(Bi0.5Na0.5)1?x(Li0.5Nd0.5)xTiO3–0.12BaTiO3 (BNTLNx–BT12) ceramics were synthesized using a conventional solid‐state reaction route. The structural transformation and miscellaneous electrical properties were systematically investigated. The A‐site modification induced two sequence transitions from ferroelectric tetragonal (T) to quasi‐ferroelectric pseudocubic (PC) phase, followed closely by the second transition from non‐ergodic to ergodic relaxor (NR‐ER), and finally to dynamic polar nanoregions (PNRs). The significant enhancement in piezoelectric activity, strain response, broad plateau‐like maximum dielectric permittivity over a large temperature range and energy‐storage level at different compositions may be attributed to the compositionally‐induced TPC to NR‐ER transition and the alignment of dynamically‐fluctuating PNRs, respectively. The evolution of multifunctional electrical properties, associated with the variations in structure/microstructure, might provide a new insight to investigate the underlying mechanism of structure‐electrical properties relationship in ferroelectric solid solutions.  相似文献   

7.
(1?x)BaTiO3xK0.5Bi0.5TiO3 (abbreviated as BT–KBT, 0.10≦x≦0.15) dielectric ceramics were prepared by a conventional oxide mixing method. The effects of KBT content on the densification, microstructure and dielectric properties of BT ceramics were investigated. The density characterization results show that the addition of KBT significantly lowered the sintering temperature of BT ceramics to about 1280 °C. The XRD results showed that the phase compositions of all samples were pure tetragonal phases. The dielectric constant and dielectric loss firstly increased and then decreased with the increase of KBT. In addition, dielectric constant and dielectric loss versus frequency were characterized in the frequency range from 100 Hz to 2 MHz. It is found that the dielectric constant and the dielectric loss changed with the increase of KBT contents regularly.  相似文献   

8.
The demand for capacitors exhibiting low sensitivity towards temperature changes and high power peaks has increased significantly. Recently, Na0.5Bi0.5TiO3 (NBT) based ceramics became excellent candidates for such extreme temperature capacitors. The dielectric loss of these materials is, however, difficult to control because of the complex defect chemistry of NBT based ceramics. Therefore, it is the limiting factor for high temperature applications. In this work, we present a strategy to increase the upper temperature limit for low dielectric loss. The addition of BiAlO3 to Na0.5Bi0.5TiO3-BaTiO3-CaZrO3 reduces the loss and sensitivity towards Bi evaporation during synthesis. For unmodified samples, the relative permittivity (εr = 581, at 1 kHz) varies less than 15 %, while the dielectric loss stays below 0.02 between -68 and 368 °C. With the addition of BiAlO3, the temperature range of low loss extends from -68 to 391 °C at even higher permittivity (εr = 628, at 1 kHz).  相似文献   

9.
Multiple ion substitutions to Na0.5Bi0.5TiO3 give rise to favourable dielectric properties over the technologically important temperature range ?55?°C to 300?°C. A relative permittivity, εr,?=?1300?±?15% was recorded, with low loss tangent, tanδ?≤?0.025, for temperatures from 310?°C to 0?°C, tanδ increasing to 0.05 at ?55?°C (1?kHz) in the targeted solid solution (1–x)[0.85Na0.5Bi0.5TiO3–0.15Ba0.8Ca0.2Ti1-yZryO3]–xNaNbO3: x?=?0.3, y?=?0.2. The εr-T plots for NaNbO3 contents x?<?0.2 exhibited a frequency-dependent inflection below the temperature of a broad dielectric peak. Higher levels of niobate substitution resulted in a single peak with frequency dispersion, typical of a normal relaxor ferroelectric. Experimental trends in properties suggest that the dielectric inflection is the true relaxor dielectric peak and appears as an inflection due to overlap with an independent broad dielectric peak. Process-related cation and oxygen vacancies and their possible contributions to dielectric properties are discussed.  相似文献   

10.
The dielectric properties, elastic modulus, and electromechanical responses of dielectric elastomers (DEs) consisting of silicone rubber and carbon black (CB) incorporated with BaTiO3 (BT) were studied. When compared with single filler/rubber composites, the resulting three‐component nanocomposites yielded very abnormal phenomena. They might be attributed to the interactions between the two kinds of fillers. The increase in concentration of CB (BT) would play a destructive role to the network structure formed by BT (CB) particles. The maximum electromechanical strain of the nanocomposites achieved at mass fraction mCB = 0.03 and mBT = 0.06. The resultant electromechanical strain would be attributed to the large dielectric permittivity in the three‐component nanocomposites, in which the BT particles themselves have a high dielectric permittivity and the electrical networks of CB particles have a contribution on the increase in dielectric permittivity of the three‐component nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
《Ceramics International》2021,47(18):25296-25303
Na0.5Bi0.5TiO3-based solid solutions are one of the most promising lead-free piezoelectric candidates since they can be easily tailored to exhibit large electrostrain. However, the large hysteresis and temperature-dependence of the electrostrain response are longstanding obstacles for their practical applications. In the present study, 0–3 type composites were developed with 0.97(0.94Na0.5Bi0.5TiO3-0.06BaTiO3)-0.03AgNbO3 (NBT-6BT-3AN) matrix phase and ZnO inclusions. The optimum addition of 5 wt.% ZnO in the composites leads to reduction in hysteresis of electrostrain by 35% in comparison with pure NBT-6BT-3AN at room temperature. Meanwhile, electrostrain of the composites maintains superior temperature stability, with a variance of less than ±10% in the temperature range between 25 and 125 °C. The reason for the improvement of electrostrain is proposed to be attributed to the ergodic/nonergodic mixture phases induced by residual stress between the inclusion and matrix, as well as the phase evolution caused by the incorporation of Zn2+ into the matrix. Therefore, this work provides a new strategy to improve the electromechanical properties of Na0.5Bi0.5TiO3-based ceramics.  相似文献   

12.
《Ceramics International》2016,42(16):18631-18640
0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (NBT-0.06BT) nanoparticles were synthesized by hydrothermal method and subsequently used to prepare NBT-0.06BT ceramics. After poling at the electric field of 3.5 kV/mm, the piezoelectric coefficient (d33) and electromechanical coupling factor (κp) reached 171 pC/N and 0.31, respectively. The NBT-0.06BT ceramics also exhibited a large remanent polarization of 46.10 μC/cm2 and electric field induced strain of 0.243% at 8 kV/mm corresponding to normalized strain d33*=303 pm/V (Smax/Emax). The effects of polarization on crystalline phase, microstructures, dielectric properties and domain structures were investigated to reveal the origin of enhanced piezoresponse and electric field induced strain in as-prepared NBT-0.06BT ceramics. It can be observed that the tetragonal phase in NBT-0.06BT ceramics was enhanced and polar nanoregions were transformed into tweed-like structures and some lamellar domains after E-field poling. The dielectric response of NBT-0.06BT ceramics also exhibited an electric-field-induced relaxor-to-ferroelectric phase transition.  相似文献   

13.
A series of temperature‐stable microwave dielectric ceramics, (1?x)(Na0.5La0.5)MoO4x(Na0.5Bi0.5)MoO4 (0.0 ≤ x ≤ 1.0) were prepared by using solid‐state reaction. All specimens can be well sintered at temperature of 580°C–680°C. Sintering behavior, phase composition, microstructures, and microwave dielectric properties of the ceramics were investigated. X‐ray diffraction results indicated that tetragonal scheelite solid solution was formed. Microwave dielectric properties showed that permittivity (εr) and temperature coefficient of resonant frequency (τf) were increased gradually, while quality factor (Q × f) values were decreased, at the x value was increased. The 0.45(Na0.5La0.5)MoO4–0.55(Na0.5Bi0.5)MoO4 ceramic sintered at 640°C with a relative permittivity of 23.1, a Q × f values of 17 500 GHz (at 9 GHz) and a near zero τf value of 0.28 ppm/°C. Far‐infrared spectra (50–1000 cm?1) study showed that complex dielectric spectra were in good agreement with the measured microwave permittivity and dielectric losses.  相似文献   

14.
We fabricated x(Bi0.5Na0.5)TiO3–(1−x)[BaTiO3–(Bi0.5Na0.5)TiO3–Nb] (BNT-doped BTBNT-Nb) dielectric materials with high permittivity and excellent high-temperature energy storage properties. The initial powder of Nb-modified BTBNT was first calcined and then modified with different stoichiometric ratios of (Bi0.5Na0.5)TiO3 (BNT). Variable-temperature X-ray diffraction (XRD) results showed that the ceramics with a small amount of BNT doping consisted of coexisting tetragonal and pseudocubic phases, which transformed into the pseudocubic phase as the test temperature increased. The results of transmission electron microscopy (TEM) showed that the ceramic grain was the core-shell structure. The permittivity of the 5 mol% BNT-doped BTBNT-Nb ceramic reached up to 2343, meeting the X9R specification. The discharge energy densities of all samples were 1.70-1.91 J/cm3 at room temperature. The discharge energy densities of all samples fluctuated by only ±5% over the wide temperature range from 25°C to 175°C and ±8% from 25°C to 200°C. The discharge energy density of the 50 mol% BNT-doped BTBNT-Nb ceramic was 2.01 J/cm3 at 210 kV/cm and 175°C. The maximum energy efficiencies of all ceramics were up to ~91% at high temperatures and were much better than those at room temperature. The stable dielectric properties within a wide temperature window and excellent high-temperature energy storage properties of this BNT-doped BTBNT-Nb system make it promising to provide candidate materials for multilayer ceramic capacitor applications.  相似文献   

15.
The electric and dielectric properties of Na0.5Bi4.50+xTi4Oy (x = −0.02, 0, 0.02) prepared by conventional mixed oxide route have been investigated by impedance spectroscopy (IS) over a wide temperature range. Single-phase bismuth layer-structured perovskite patterns were observed through X-ray diffraction of the three samples Na0.5Bi4.5Ti4O15, Na0.5Bi4.48Ti4Oy, and Na0.5Bi4.52Ti4Oy. The results show that the relative permittivity (εr) increases with the increase in temperature and reaches its maximum at about 675℃. With the continuous increase in temperature, the permittivity decreases gradually. Both relative permittivity and dielectric loss show great stability at the low-temperature zone. The ceramic of x = 0.02 with Ea of 1.09 eV has the maximum oxygen ionic transport number between 600 and 800℃ for all samples. And at this time, it has the maximum electrical conductivity. All the results indicated that Na0.5Bi4.50+xTi4Oy (x = −0.02, 0, 0.02) ceramics were promising base materials for high-temperature capacitor because of their high dielectric properties.  相似文献   

16.
A novel strategy of enhancing the dielectric and energy storage properties of Na0.5Bi0.5TiO3–BaTiO3 (NBT–BT) ceramics by introducing a K0.5Na0.5NbO3 (KNN) ferroelectric phase is proposed herein, and its underlying mechanism is elucidated. The lead-free KNN ceramic decreases the residual polarisation and increases the electric breakdown strength of the NBT–BT matrix through the simultaneous modification of its A-sites and B-sites. The obtained NBT?BT?x?KNN ceramics have a perovskite structure with unifying grains. A bulk 0.9NBT–BT–0.1KNN ceramic sample with a thickness of 0.2 mm possesses a high energy storage density of 2.81 J/cm3 at an applied electric field of 180 kV/cm. Moreover, it exhibits good insulation properties and undergoes rapid charge and discharge processes. Therefore, the obtained 0.9NBT–BT–0.1KNN ceramic can be potentially used in high-power applications because of its high energy density, good insulation properties, and large discharge rate.  相似文献   

17.
Quenching relaxor ferroelectric 0.94(Na1/2Bi1/2)TiO3–0.06BaTiO3 (NBT-6BT) enhances the depolarization temperature (Td), linked to the stabilization of ferroelectric order. The thermal evolution of the domain structure and phase assemblage provides insights about the onset of ferroelectric order in quenched materials. Unpoled furnace cooled and quenched NBT-6BT ceramics were studied using in situ temperature-dependent transmission electron microscopy. The rhombohedral to tetragonal structural transition in furnace cooled and quenched samples occurs in a comparable temperature range of 120°C–220°C. While the tetragonal phase is characterized by polar nanoregions (PNRs) and no domain contrast in the furnace cooled state, the quenched composition exhibits an increased fraction of lamellar domains, which are partially stable up to 300°C, thus benefiting the delayed depolarization. This is further corroborated by the dielectric data indicating earlier freezing of PNR dynamics in the quenched state. The reversibility of the phase transition is demonstrated by successive cooling, where quenched NBT-6BT features an increased grainy PNR contrast after the experiment, followed by a kinetically delayed coalescence of PNRs back into lamellar domains. This demonstrates that the stabilized ferroelectric state upon quenching is associated with the conversion of polar units on the nanometer scale into long-range domain structures.  相似文献   

18.
Various strategies to improve the dielectric properties of ACu3Ti4O12 (A = Sr, Ca, Ba, Cd, and Na1/2Bi1/2) ceramics have widely been investigated. However, the reduction in the loss tangent (tanδ) is usually accompanied by the decreased dielectric permittivity (ε′), or vice versa. Herein, we report a route to considerably increase ε′ with a simultaneous reduction in tanδ in Ta5+–doped Na1/2Y1/2Cu3Ti4O12 (NYCTO) ceramics. Dense microstructures with segregation of Cu– and Ta–rich phases along the grain boundaries (GBs) and slightly increased mean grain size were observed. The samples prepared via solid-state reaction displayed an increase in ε′ by more than a factor of 3, whereas tanδ was significantly reduced by an order of magnitude. The GB–conduction activation energy and resistance raised due to the segregation of Cu/Ta–rich phases along the GBs, resulting in a decreased tanδ. Concurrently, the grain–conduction activation energy and grain resistance of the NYCTO ceramics were reduced by Ta5+ doping ions owing to the increased Cu+/Cu2+, Cu3+/Cu2+, and Ti3+/Ti4+ ratios, resulting in enhanced interfacial polarization and ε′. The effects of Ta5+ dopant on the giant dielectric response and electrical properties of the grain and GBs were described based on the Maxwell–Wagner polarization at the insulating GB interface, following the internal barrier layer capacitor model.  相似文献   

19.
《Ceramics International》2017,43(9):7271-7277
Colossal permittivity (CP, ε>104) behavior in BaTiO3–Na0.5Bi0.5TiO3 (BT-NBT) ceramics has been studied, which showed extremely high permittivity up to ~105. Dielectric properties of samples showed Debye-like relaxations in the frequency range 20 Hz–30 MHz. Two different polarizations located in grain boundaries and grains respectively are responsible for the CP behavior and the models of defect charge compensation achieved by niobium doping are proposed to explain the phenomenon of abnormal variation of dielectric constant.By using defect engineering, a Nb-doped BaTiO3 ceramics with stable colossal permittivity (εr =1.3×104 at 1 kHz and room temperature),high bulk resistivity (>1010 Ω·cm) as well as relative low dielectric loss (tanδ~0.06) has been obtained over a wide temperature range of −55–150 °C, satisfying IEA X8R specification, which has a potential application prospect in high capacity solid supercapacitor.  相似文献   

20.
0.82[0.94Bi0.5Na0.5TiO3-0.06BaTiO3]-0.18CaZrO3:xZnO (BNT-BT-CZ:xZnO, x = 0–0.40 with interval of 0.10) high temperature dielectric composites were prepared and the structural and electrical properties were investigated. Significantly improved temperature-insensitive permittivity spectra have been observed in the composites: the temperature range for low variance in permittivity (Δεrr,150?°C < 10%) is 70–190?°C for x?=?0, whereas it is extended at least to 30–250?°C for the optimal x?=?0.10 at 1?kHz. Especially, for this optimal composite, the variance of permittivity is less than 4.0% in the temperature range of 30–400?°C with the suitable permittivity value of ~ 600 at 10?kHz. By comparatively investigating the properties of unpoled and poled samples, the improved temperature-insensitive permittivity is rationalized by the ZnO-induced local electric field that can suppress the evolution of polar nanoregions and thus enhance the temperature-insensitivity of permittivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号