首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Proton conductive BaZr0.8Y0.2O3−δ (BZY20) is a promising electrolyte candidate with perspective application in electrochemical devices, including fuel cells, electrolyzer cells. Mn, Fe, and Co are commonly incorporated into BZY20, to improve the sinterability (CoO), or due to possible inter-diffusion by calcining with cathode materials (eg, La1−xSrxMnO3−δ, La1−xSrxCo1−yFeyO3−δ) for cell preparation. This work was performed to investigate the influence of Mn, Fe, and Co on the structural and electrochemical properties of BZY20. As reported in literature, the sinterability of BZY20 was improved by adding CoO. XANES analysis shows that Mn, Fe, and Co are possibly incorporated into the perovskite crystal structure of BZY20, and are partially reduced when the samples were exposed to hydrogen at 600°C for 24 hours. However, through electrochemical analysis, we found that all these three elements decrease both the proton conductivity and transport numbers of proton conduction of BZY20. Therefore, the BZY20 electrolyte should be carefully handled to avoid the incorporation of these transition metal elements, to fabricate the cells with high performance.  相似文献   

2.
《Ceramics International》2007,33(6):1053-1055
The system La1−xYxCuS2 has been prepared by a stoichiometric solid-state reaction of La2S3, Y2S3, Cu, and S at 1223 K. La1−xYxCuS2 in the range of x from 0 to 0.25 crystallizes in the LaCuS2 structure type, which is a layered structure. The optical band gap for La1−xYxCuS2 changes slightly between 2.23 eV and 2.26 eV, deduced from their absorption spectra. From a band structure calculation, the optical transitions for La1−xYxCuS2 mainly arise from the valence orbits of Cu and S atoms.  相似文献   

3.
Phase equilibria in the 1/2Y2O3–SrO–1/2Fe2O3 system were systematically studied at 1373 K in air. The homogeneity ranges and crystal structure of the solid solutions Sr1−xYxFeO3−δ with 0.875 ≤ x ≤ 1 (sp. gr. Pnma) and 0.05 ≤ x ≤ 0.25 (sp. gr. Pm3 m) and Sr3−zYzFe2O7−δ with 0 ≤ z ≤ 0.25 (sp. gr. I4/mmm) were determined by X-ray diffraction analysis of quenched samples. The structural parameters of the single-phase oxides were refined by the Rietveld profile method. The isothermal-isobaric phase diagram for the 1/2Y2O3–SrO–1/2Fe2O3 system at 1373 K in air is presented. The changes of oxygen content in the solid solutions Sr1−xYxFeO3−δ (0.05 ≤ x ≤ 0.25) and Sr3−zYzFe2O7−δ with 0 ≤ z ≤ 0.25 vs temperature in air were determined by the thermogravimetric analysis. Oxygen content was also calculated from the iodometric titration results. The gradual substitution of strontium by yttrium in Sr1−xYxFeO3−δ (0.05 ≤ x ≤ 0.25) leads to a decrease in the oxygen content and the mean oxidation state of iron. The average thermal expansion coefficients for Sr1−xYxFeO3−δ (0.875 ≤ x ≤ 1 and 0.05 ≤ x ≤ 0.25) and Sr3−zYzFe2O7−δ (0 ≤ z ≤ 0.25) were calculated within the temperature range 298-1373 K in air.  相似文献   

4.
Protonic ceramic fuel cells (PCFCs) using BaZr0.8−xCexY0.2O3−δ (BZCY) as electrolyte materials have attracted widespread attention because of their high performance at reduced temperature. However, there are few systematic studies on both the performance and stability of BZCY materials. In this paper, we report our work on the electrochemical performance and chemical stability of BaZr0.8−xCexY0.2O3−δ (= 0, 0.1, 0.3, 0.5, and 0.7) series. The results show that electronic hole conductivity decreases with increasing Ce4+ content, especially at high temperature. In addition, H2 atmosphere reduces the conductive activation energy of BZCY. On the contrary, air atmosphere causes serious electronic leakage. These effects are also reflected in the operation of PCFCs, that is, the higher the Ce4+ content, the higher the open-circuit voltage and output power density. However, low Ce4+ content may stabilize the materials in CO2 atmosphere. At 700°C, an anode-supported PCFC based on BaZr0.1Ce0.7Y0.2O3−δ electrolyte, using humid H2 fuel, gives a peak power density of 1.0 W cm−2. At 600°C, BaZr0.8Y0.2O3−δ and BaZr0.7Ce0.1Y0.2O3−δ show a good stability in CO2-containing atmosphere.  相似文献   

5.
《Ceramics International》2023,49(8):12360-12371
In order to further understand the effect of Y2O3 doping on the electrical conductivity of CaHf1−xYxO3−δ, which was prepared by conventional solid-state reaction. The electrical conductivity of CaHf1−xYxO3−δ was measured by two-terminal AC method in an oxygen-rich atmosphere, hydrogen-rich atmosphere and water vapor-rich atmosphere at the temperature between 973 and 1373 K. The test results show that the conductivity of CaHf1−xYxO3−δ first increases and then decreases with x from 0.08 to 0.20, and its total conductivity and conductivity activation energy are 3.88 × 10−7 to 5.34 × 10−5S/m and 0.76–0.92eV respectively. Combined with the test results of the H/D isotope effect, it is found that protons are the main conductive carriers in the three different atmosphere at temperatures range of 973–1173 K. In addition, in the temperatures range of 1273–1373 K, the positive holes are the main conductive carriers in the oxygen rich atmosphere, and the vacancies participates in the conductive process as the main conductive carriers in the water vapor rich atmosphere. The chemical diffusion coefficients of CaHf1−xYxO3−δ is 3.9 × 10−6 to 2.4 × 10−5 cm2/s in the temperature range of 973–1373 K. According to the test results of electromotive force, the theoretical electromotive force is consistent with the measured electromotive force. The proton transfer number of CaHf1−xYxO3−δ exceeded 97% in hydrogen atmosphere at temperatures from 973 to 1173 K. In sum, these findings of CaHf1−xYxO3−δ can be used as alternative materials for hydrogen sensor electrolytes.  相似文献   

6.
This work reports on the preparation, structure, photochemical, and magnetic properties of six-layered Aurivillius bismuth ferrititanates, that is, Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles. The samples were prepared through the modified citrate complexation and precursor film process. The XRD Rietveld refinements were conducted to study the phase formations and crystal structure. The morphological and chemical component characteristics were investigated using SEM, TEM, and EDX analyses. Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles present an indirect allowed transitions with band energies of 2.04, 2.03, and 2.02 eV, respectively. The hybridized (O2p+Fet2g+Bi6s) formed the valence band (VB) and electronic components of (Ti–3d+Fe–eg) formed the conduction band (CB) of this six-layered Aurivillius bismuth ferrititanate. The three samples showed efficient photocatalytic degradation of Rhodamine B (RhB) dyes with the excitation wavelength λ > 420 nm. The optical absorption, photodegradation, and magnetic abilities were improved through microstructural modification on “B” site via partial substitution of Mg2+ and Nb5+ for Ti4+. The photocatalytic results were discussed based on the layer structure and multivalent Fe ions. Fe3+/2+ in the perovskite slabs (Bi5Fe3Ti3O19)2− could act as the catalytic mediators in the photocatalysis process. As a photocatalyst, Aurivillius Bi7(Ti2Mg)Fe3O21−δ nanoparticle is advantageous due to its photocatalytic and magnetically recoverable abilities.  相似文献   

7.
A strategy of tailoring the ceramic cathode composite is presented to improve the performance of proton-conducting solid oxide fuel cells (SOFCs) prepared by a one-step co-firing process. Comparing to the conventional way of using BaCe0.7Zr0.1Y0.2O3-δ (BCZY) in the composite cathode for BCZY-electrolyte based cells, the replacement of BCZY by BaZr0.8Y0.2O3-δ (BZY) mitigates the reaction between the two ceramic phases in the composite cathode during the co-firing process and also keeps the cathode with sufficient porosity for ample gas diffusion which could assist in adequate cathode reactions. As a result, the BCZY-electrolyte based cell with Sm0.5Sr0.5CoO3-δ (SSC)-BZY composite cathode shows a power output of 300?mW?cm?2 at 600?°C, which is the largest ever reported for proton-conducting SOFCs prepared by a one-step co-firing process. The strategy of tailoring the composite cathode offers both small ohmic resistance and polarization resistance, providing a promising way to develop single-step co-fired proton-conducting SOFCs.  相似文献   

8.
《Ceramics International》2016,42(9):11093-11098
In this paper, we report nonlinear optical properties of a composite nanostructure with the general formula (1−x) CaFe2O4–(x) BaTiO3 (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1) prepared by sol–gel and conventional solid-state reaction methods. Structural properties and chemical compositions of the samples were characterized using XRD and HRTEM. Basic optical constants, band gap energy and linear absorption coefficient were calculated through optical absorbance measurements. The nonlinear optical properties were investigated using the single-beam open aperture Z-scan technique. The obtained nonlinearity fits to Two-photon absorption process and all samples display high nonlinear absorption effect. The incorporation of BaTiO3 into CaFe2O4 systems show a significant improvement in the nonlinear optical properties. These composite that exhibit efficient optical limiting can have potential applications in photonic devices.  相似文献   

9.
《Ceramics International》2022,48(12):17208-17216
Solid oxide fuel cells based on proton-conducting ceramic electrolytes, i.e., protonic ceramic fuel cells (PCFCs), are promising in operating at intermediate to low temperature. BaZr0.8Y0.2O3-δ (BZY) and BaZr0.1Ce0.7Y0.2O3-δ (BZCY) are two typical electrolyte materials for PCFCs. However, there is still a lack of basis for making a choice between the two materials. In this paper, we present a comparison investigation on practical BZY and BZCY electrolytes with NiO of 2 mol.% as sintering aid. Their crystal structure, sinterability, microstructure, and electrical conductivity in humid air and hydrogen (3% H2O) are measured and analyzed. Anode-supported PCFCs based on the two electrolyte materials are prepared and their electrochemical performances are tested and analyzed in association with an examination on their microstructure. The results show that both materials can be densified after sintered with NiO aid at 1400 °C for 6h. Ni is doped into the interstitial of BZY while it occupies the B site of perovskite lattice of BZCY. The sintered BZY has small grains and many grain boundaries while BZCY has large grains and much fewer grain boundaries, resulting in lower conductivity of BZY than that of BZCY. A PCFC with BZY electrolyte gives a peak power density of 360 mW cm?2 at 700 °C, while this value for a PCFC with BZCY is 855 mW cm?2. Although the performances of BZCY seems much better than those of BZY, a stability test in 10% CO2-containing Ar at 650 °C shows BZY is stable while BZCY reacts with CO2 to form BaCO3 and CeO2.  相似文献   

10.
Samarium doped zinc-magnesium-phosphate glasses having composition (60 – x)P2O5–10MgO–30ZnO–xSm2O3 where x = 0.1, 0.3, 0.6, 1.0 mol % were prepared by melt quenching technique. Archimedes method was used to measure their densitieswhich are lying in the range 2.65–2.91 g/cm3. On the basis of the increasing trend in the density while increasing the content of Sm2O3 it can be concluded that the bridging oxygen is converted to non-bridging oxygen The UV-Vis absorption spectroscopy was carried on in the wavelength range 310–900 nm where the absorption spectra consist of six absorption peaks corresponding to the transitions from the ground state 6H5/2 to various excited energy levels. The optical band gaps are calculated to be 3.93–4.41 eV, 3.31–3.73 eV and 0.27–0.29 eV for direct band gap, indirect band gap and Urbach energy, respectively. The physical parameters like oxygen packing density, refractive index, molar refractivity, metallization, and electronic polarizability are also studied. The Differential Scanning Calorimetry (DSC) technique is used to evaluate the thermal stability.  相似文献   

11.
The crystal structures of proton‐conducting BaZr1?xYxO3?x/2 (BZY05–BZY20) and BaCe0.8Y0.2O2.9 (BCY20) during hydration/dehydration has been studied by in situ high‐temperature X‐ray diffraction and thermal analysis. A contraction/expansion of the crystal lattice associated with dehydration/hydration was observed for all materials at elevated temperatures and the polymorphic phase transition temperatures of BaCe0.8Y0.2O2.9 were depressed by lowering the vapor pressure of water. A thermodynamic formalism is introduced to describe the chemical expansion associated with the hydration of oxygen vacancies in acceptor‐doped oxides. A conventional point defect model was applied to describe the lattice strain associated with the hydration. The chemical expansion is discussed with respect to the available volumetric data on the hydration of proton‐conducting oxide materials and its likely impact on ceramic fuel cells/hydrogen separation membranes utilizing a proton‐conducting electrolyte.  相似文献   

12.
《Ceramics International》2020,46(17):26895-26902
The structural, optical, and magnetic properties of polycrystalline Nd1-xAxMn0.5Co0.5O3−δ (A = Ba, Sr and Ca; x = 0 and 0.25) perovskite oxides were investigated. The powder XRD pattern demonstrates that the unit cell volume decreases with the changing A-site dopant type. The estimated bandgap energy (Eg) from UV–vis spectroscopic for NdMn0.5Co0.5O3−δ, Nd0.75Ba0.25Mn0.5Co0.5O3−δ, Nd0.75Sr0.25Mn0.5Co0.5O3−δ and Nd0.75Ca0.25Mn0.5Co0.5O3−δ are 3.27, 3.82, 3.79 and 3.53 eV respectively. The substitution of divalent element alters the absorption spectrum, while the redshift optical transition was observed with an increasing ionic radius of dopant. Temperature-dependent magnetization exposes that the Curie temperature (TC) gradually decreases with the decreasing size of alkaline earth metals, and glassy nature was observed at a lower applied magnetic field. The observation of TC can be well explained by the considering of the cationic size disorder parameter in A-site than the random distribution of B-site ions.  相似文献   

13.
《Ceramics International》2015,41(6):7796-7802
The perovskite proton conductors BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x=0.9, 0.94, 0.98, 1.0, 1.03, 1.06, and 1.1) have been successfully prepared by the conventional solid state reaction route. X-ray diffraction (XRD) patterns of the samples indicate that BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x≥1.0) samples possess a single phase orthorhombic structure, but a secondary phase (Y,Ce)O2−δ exists in BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ (x<1.0) samples. SEM photographs show that the grain size of BaxCe0.7Zr0.1Y0.1Yb0.1O3−δ increases and the porosity decreases with Ba2+ content varying from x=0.9 to 1.1. Because of ZnO addition as sintering aid, the sintering temperature of the samples reduces from 1550 °C to 1250 °C. The chemical stability of the samples against CO2 decreases with the increase in Ba content from x=0.9 to 1.1. All the samples show a excellent stability against water vapor at 850 °C. The conductivities of the samples increase and the activation energies reduce with the increase in Ba content. The present results suggest that it is very important to control the stoichiometry of cations to obtain desired perovskite type high temperature proton conductors.  相似文献   

14.
Structural and optical properties of Mg1−xMnxP2O6 (x = 0–1.0) magnesium metaphosphate were investigated in detail. The complete solid solution of MgP2O6–MnP2O6 is confirmed as monoclinic space group C2/c. The dynamic luminescence was studied by changing the Mn2+ content (0–100 mol%) and temperature (10–300 K). There is a good chemical homogeneity in Mg1−xMnxP2O6 (x = 0–1.0), which can be supported by the linearly varying cell size and the gradually changing vibration spectrum. However, the optical properties of the solid solution do not show a continuous change trend, that is, an obvious inflection point appeared when x = 0.5. Mg1−xMnxP2O6 (x = 0.1–0.5) shows a dominant O2− → Mn2+ charge transfer (CT) absorption in the near UV region and feeble d–d transitions of Mn2+ in visible wavelength region. However, Mg1−xMnxP2O6 (x = 0.6–1.0) presents a strong d–d absorption transition and nearly disappeared CT band. The changing trend of optical absorption is also maintained in the excitation and emission of the solid solutions. In Mg1−xMnxP2O6 (x = 0.1–0.5), (Mn, Mg)O6 octahedron has slight distortion, and the effective luminescence only occurs when CT band excitation is used. In contrast, in Mg1−xMnxP2O6 (x = 0.6–1.0), (Mn, Mg)O6 octahedron is highly distorted, and only excitation at d–d transition produces effective luminescence. This research highlights the critical role of MnO6 octahedral distortions in the luminescence properties of Mn2+ activators. The research provides a reference for developing optical materials.  相似文献   

15.
Lithium ion dynamics in Li4+xTi5O12 spinel are investigated from first principles calculations. The diffusion pathways are optimized and the energy barriers of lithium migration under four types of dilute defect extremes: Li4+δTi5O12, Li4−δTi5O12, Li7+δTi5O12 and Li7−δTi5O12 (δ ? 1) are calculated with the nudged elastic band method. Results show that lithium diffusion in the charged state (energy barriers are 1.0 and 0.7 eV for interstitial Li and Li vacancy diffusion, respectively) is much slower than in the discharged state (energy barriers are 0.13 and 0.35 eV for interstitial Li and Li vacancy diffusion, respectively). The diffusion coefficients are evaluated based on lattice gas model and hopping mechanism. The obtained results are compared with available experimental data within a two-phase co-existence framework.  相似文献   

16.
《Ceramics International》2020,46(10):16524-16532
Yttrium iron garnet (YIG) nanoparticles (NPs) doped with rare earth (RE) metal ions (Y2.5Sm0.5Fe5O12, Y2.5Nd0.5Fe5O12) were successfully synthesized by sol-gel auto combustion approach. The cubic crystalline structure and morphology of the prepared garnet ferrite NPs were analyzed by X-ray diffractometer (XRD) and field emission scanning electron microscopy (FESEM). The cubic crystalline garnet phase of the synthesized YIG, Sm-YIG and Nd-YIG samples was successfully achieved at 950 °C sintering temperature. The force constant and absorption bands were estimated by using Fourier transform infrared spectroscopy (FTIR). The doping effect of RE metal ions on the chemical states of YIG were examined by x-ray photoelectron microscopy (XPS). The valence band (from 12.63 eV to 13.22 eV), conduction band (from 10.89 eV to 11.34 eV) edges and optical bandgap values of RE doped YIG samples were calculated using UV–Vis spectroscopy and ultraviolet photo electron spectroscopy (UPS). The magnetic analysis of the prepared NPs was studied using vibrating sample magnetometer (VSM). The XPS analysis of RE doped YIG samples exhibit the existence of RE (Sm+3, Nd+3) contents on the surface of YIG ferrite by decreasing the oxygen lattice in garnet structure. The optical bandgap (from 1.74 eV to 1.88 eV) explains the semiconducting nature of the synthesized NPs. The UPS results confirm the valence band position of YIG doped samples. The saturation magnetization and remanence of RE doped garnet ferrite samples increased from 13.45 to 18.83 emu/g and 4.06–6.53 emu/g, respectively.  相似文献   

17.
In the process of exploring ferroelectric semiconductors, a new system of (1−x) KNbO3xSrFeO3−δ (x = 0.00-0.20) was successfully synthesized via solid-state reaction. The crystal structures, ferroelectric, dielectric, optical, and electrical properties were systematically characterized. The orthorhombic phase with Amm2 space group is detected in all the ceramics. In addition, the orthorhombic and tetragonal phases coexist in 0.80KNbO3-0.20SrFeO3-δ ceramic. The decrease in oxygen octahedron distortion induces a weak ferroelectric polarization. The existence of long-range ferroelectric polarization order in all the ceramics is verified and the bandgap of the ceramics can be tuned to ~2.18 eV. The improved short-circuit photocurrent density (Jsc) and open-circuit voltage (Voc) of the poled 0.95KNbO3-0.05SrFeO3−δ ceramic at 30 kV/cm are ~6.90 nA/cm2 and 0.04 V, respectively. The activation energies for electrical conductivity of the grains and grain boundaries from 0.90KN–0.10SF ceramic are 0.67 and 0.77 eV, respectively, which indicate the doubly ionized oxygen vacancies. This work provides a new way to tune the optical bandgap/ferroelectric properties of KNbO3-based ceramics for potential application in ferroelectric photovoltaic and energy fields.  相似文献   

18.
《Ceramics International》2016,42(15):17162-17167
The PbTi1xPdxO3−δ (xPTPO) thin films prepared by chemical solution deposition have been investigated by means of structural characterizations, optical and magnetic measurements. X-ray diffraction patterns show that all the films have a pseudotetragonal perovskite structure, but also exhibit a lattice dilatation behavior and increased internal strain as the x increases. A possible mechanism for strain-induced structural evolution is discussed. Raman scattering further corroborates this change in average structure, where the characteristic variation of phonon modes, indirectly reveal the incorporation of Pd2+ ions into host lattice. Transmittance spectra analysis indicates that Pd doping has a key effect on the energy band structure. The optical bandgap of xPTPO films decreases significantly with increasing Pd content, expressed by (3.5–9.0x) eV (0≤x≤0.09). Also, magnetic switching driven by doping has been confirmed in the films, which is attributed to the competition between ferromagnetic and paramagnetic/antiferromagnetic components.  相似文献   

19.
A2B2O7 and A3BO7 transparent ceramic families are potential materials for optical lenses because of their high refractive index. Although nonstoichiometry is widely present in these material families, its effect on refractive index and optical properties has not yet been fully studied. In this study, optical properties are reported for the Y3NbO7 transparent ceramic series, Y1−xNbxO1.5+x (x = 0.20, 0.22, 0.24, 0.25, 0.26), which were fabricated by a pressureless pre-sintering and a hot isostatic pressing post-sintering treatment. The refractive index increases from 2.04 to 2.10 (at 587.6 nm) as the Nb content x increases, which is mainly attributed to the variation in the oxygen ion/vacancy ratio. The Abbe number is larger than 40, showing a decreasing trend as the Nb content x increases. The specimen with x = 0.24 has the highest inline transmittance, which were 62% and 76% at 587.6 and 2000 nm, respectively, for a 1-mm-thick specimen. Through the approach of nonstoichiometry, Y1−xNbxO1.5+x series exhibit balanced properties of refractive index, Abbe number, and transmittance, which can be considered as a promising candidate for high refractive index optical lenses.  相似文献   

20.
A series of Sr-ion deficient perovskites La0.8Sr0.2−xGa0.8Mg0.2O2.8−δ (LSGM8282, x = 0.00, 0.05, 0.10, 0.15, 0.20), was synthesized by a conventional solid-state reaction method and their electric conductivity and chemical reactivity with Gd-doped ceria were investigated. Reactivity tests between the LSGMs and Ce0.9Gd0.1O2−δ (GDC) were carried out by X-ray diffraction, SEM-EDS, and electric conductivity measurements. The Sr-ion deficient LSGMs have a lower reactivity against the formation of high-resistivity phases than the stoichiometric (x = 0.00) LSGM. The reaction layer formed at the interface of LSGM and GDC during the sintering process due to the mutual diffusion of the cations was classified into five layers depending on the composition. The introduction of the Sr-ion deficient LSGM suppressed the formation of the highly resistive Sr-rich (La1+xSr1−x)Ga3O7−δ phase. It was suggested that the Sr-ion deficient LSGM (La0.8Sr0.2−xGa0.8Mg0.2O2.8−δ) of x = 0.15 was the best composition for suppressing the reaction with the GDC interlayer while retaining a relatively good electric conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号