首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this study, the use of Pinhão husk as a source of reinforcement material for development of edible films, where the Pinhão seed flour and bovine gelatin were used as matrices for the films. Mechanical properties, water vapor permeability, solubility and opacity, microstructure, and thermal degradation characterized the films produced. The films presented homogeneous and cohesive structures. Pinhão husk content positively affected film properties by increasing tensile strength (TS) and decreasing water vapor permeability (WVP), with Pinhão flour film formulations (5.0% Pinhão flour, 1.2% glycerol, and 0.4% Pinhão husk) and gelatin (5.0% gelatin, 2.0% glycerol, and 0.4% Pinhão husk) those that presented the best results (5.06 MPa for TS and 0.14 g.mm/kPa.h.m2 for WVP) and (3.88 MPa for TS and 0.28 g.mm/kPa.h.m2 for WVP), respectively The thermal degradation study revealed that the films are stable at temperatures below 150°C, losing only free water and volatile compounds of low molecular weight. Pinhão husk can reinforce films, making them suitable as biodegradable and edible packaging materials for eco-friendly food products. This contributes to the circular economy, preserves biodiversity, and reduces plastic waste, offering promising sustainable packaging solutions.  相似文献   

2.
A series of poly(propylene carbonate) (PPC)/aluminum flake (ALF) composite films with different ALF contents were prepared via a melt‐blending method. Their cross‐section morphologies, thermal properties, tensile strength (TS), and gas barrier properties were investigated as a function of ALF contents. SEM images reveal the good dispersion and orientation of ALF along with melt flow direction within PPC matrix. The oxygen permeability coefficient (OP) and water vapor permeability coefficient (WVP) of the composite films decrease continuously with ALF contents increasing up to 5 wt %, which are 32.4% and 75.2% that of pure PPC, respectively. Furthermore, the TS and thermal properties of PPC/ALF composite film are also improved by the incorporation of ALF particles. The PPC/ALF composite films have potential applications in packaging area due to its environmental‐friendly properties, superior water vapor, and oxygen barrier characteristics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41663.  相似文献   

3.
The effects of polymer composition, glycerol concentration and pH of film-forming solution on water vapor permeability (WVP), tensile strength (TS) and percentage elongation at break (%E) of composite edible film based on konjac glucomannan (KGM), chitosan and soy protein isolate (SPI) were investigated. Of the plasticizers tested, glycerol was found to be a suitable plasticizer regarding mechanical properties and WVP. The WVPs of the films were determined to be (3.29–9.63) × 10?11 g m?1 s?1 Pa?1, TS between 16.77 and 51.07 MPa, and %E between 1.29% and 10.73%, depending on film composition. Incorporation of SPI to the polymer matrix decreased both WVP and mechanical properties. Increase in both glycerol concentration and the pH of film-forming solution decreased WVP and TS but increased %E. The results suggest that film composition and the pH of film-forming solution are the major factors influencing the film properties.  相似文献   

4.
The present investigation dealt with the mechanical properties, water‐vapor transmission behavior at different relative humidity conditions, and DSC thermograms of edible films formulated using various proteins (casein, gelatin, albumin) in combination with starch and nonthermal as well as intense thermal blending. Nonthermal blended film showed in the DSC thermogram a double Tg, indicating poor miscibility of the components and, hence, a poor film‐forming property. However, the DSC thermogram of all the films based on intense thermal blending showed a single Tg, indicating the complete molecular miscibility of the components. Casein‐based film showed a lower water‐vapor transmission rate, water gain at different relative humidity conditions, and higher tensile strength compared to its counterparts containing gelatin and albumin. Since the casein–starch blend gave better film properties, a blend of hydrophobic carnauba wax and casein was prepared to compare the properties of hydrophilic–hydrophilic and hydrophobic–hydrophilic blends. Both these blends compared well with respect to the water‐vapor transmission rate. Wax‐based film showed multiphased behavior in the DSC thermograms and the percent elongation was lower as compared to the casein–starch blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 64–71, 2003  相似文献   

5.
Packaging films based on fish gelatin-rice flour (FG-RF) at different blend ratios (FG-RF  10:0, 8:2, 6:4, 5:5 and 0:10, w/w) using 30% (w/w) glycerol as plasticiser were prepared and characterised. FG-RF composite films exhibited lower tensile strength (TS) and elongation at break (EAB), compared to FG film (P < 0.05). Higher water vapour permeability (WVP), but lower water solubility (WS) was obtained for FG-RF composite films having the increased proportion of RF (P < 0.05). Light transmission in ultraviolet (UV) and visible regions (200–800 nm) was lowered in all FG-RF composite films, indicating excellent light barrier characteristics. Based on FTIR spectra, significant changes in molecular structure and lower intermolecular interactions between FG and RF molecules were found in FG-RF (8:2) composite film. Thermogravimetric analysis indicated that FG-RF (8:2) composite film had only 7.61% (w/w) heat-stable mass residues in the temperature range of 50–600 °C. DSC thermograms suggested that FG-RF (8:2) composite film consisting of amorphous/microcrystalline layers of partially miscible aggregated junction zones and the coexisting two different order phases of unbound domains. SEM micrographs elucidated that FG-RF (8:2) composite film was rougher than FG film, but no signs of phase separation between film components were observed, thereby confirming their potential use as packaging material.  相似文献   

6.
Nanocrystalline cellulose (NCC) reinforced poly(caprolactone) (PCL) composites were prepared by compression molding. The NCC content varied from 2 to 10% by weight. NCC played a significant role in improving the mechanical properties of PCL. The addition of 5 wt % NCC caused a 62% improvement of the tensile strength (TS) value of PCL films. Similarly, tensile modulus (TM) values were also improved by NCC reinforcement but elongation at break (Eb) values decreased montonically with NCC content. The water vapor permeability (WVP) of PCL was 1.51 g·mm/m2·day·kPa, whereas PCL films containing 5 wt % NCC showed a WVP of 1.22 g·mm/m2·day·kPa. The oxygen transmission rate (OTR) and carbon dioxide transmission rate (CO2TR) of PCL decreased by 19 and 17%, respectively, with 5 wt % NCC incorporation. It was found that the mechanical and barrier properties of both PCL and PCL‐NCC composites further improved with 10 kGy gamma irradiation treatment. The combination of NCC and radiation significantly increased the TS, TM, and Eb (by 156, 123, and 80%, respectively, compared to untreated PCL). The WVP, OTR, and CO2TR decreased by 25–35% with respect to untreated PCL. The surface and interface morphologies of the PCL‐NCC composites were studied by scanning electron microscopy and suggested homogeneous distribution of NCC within the PCL matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Transparent adhesive polymer electrolytes, to be used for fabrication of electrochromic glass via a lamination process, were developed from gelatin blended with ethylene-acrylic acid (EAA) copolymer ionomer resin. The gelatin-based electrolyte films were prepared by mixing the polymer with glycerol, LiClO4, formaldehyde, and EAA in a microcompounder. The concentration effect of EAA (i.e., 2.5, 5, 10, and 20 wt% with respect to the gelatin) on thermomechanical, optical, and electrochemical properties of the prepared films were then studied. Results from atomic force micrographs revealed that surface roughness of the neat gelatin film significantly decreased after blending with 20 wt% EAA. This corresponds to the highest ionic conductivity value (4.46 × 10−6 S/cm) of gelatin-based electrolyte in this study. Percentage light transmittance was also maintained above 80%, provided that the concentration of ionomer was kept below 20%. Finally, performance of the electrochromic device with a configuration of ITO/WO3/gelatin/NiO/ITO was demonstrated. Coloration efficiency and response time of 60.38 cm2/C and 10 s/50 s (coloring/bleaching) were achieved, respectively.  相似文献   

8.
In this study, the objective was to prepare and characterize films with different concentrations of demineralized whey (3–10%) and gelatin (1–3%) containing glycerol (10–70%) as a plasticizer and chitosan or nanochitosan as an additive. Mechanical properties, thickness, grammage, opacity, moisture content, water, and ethanol solubilities of the obtained films were determined. The formation of films without glycerol and gelatin was not possible. A higher gelatin concentration led to more desirable mechanical properties. Thickness, grammage, opacity, and moisture content remained almost constant after increasing gelatin concentration. Heightening glycerol concentrations raised water and ethanol solubility. Despite presenting high water solubility, the films showed low ethanol solubility. The formulation containing whey (3%), glycerol (20%), gelatin (3%), and chitosan (0.1%) resulted in the highest performing film concerning physical and mechanical aspects. Through Fourier transform infrared spectroscopy analysis, it was possible to observe the displacement and the frequency reduction of the band near 3,300 cm−1, revealing different protein interactions. It indicates that hydrogen bonds occur between the amino group and  OH of the protein molecules reducing film hydrophilicity. Contact angle measurements also showed a less hydrophilic character. The films present the potential to prolong the shelf life of food, such as dairy products.  相似文献   

9.
Starch is an appealing natural polymer for the scaled-up production of biodegradable plastics. However, the low water resistance of starch has made its broad applicability largely doubted. In this study, starch was combined with beeswax (BW) through a pilot scale continuous solution casting (CSC) technique to reduce water affinity while keeping the ensuing films totally biodegradable. The phase morphology, surface wettability, and water vapor permeability (WVP) of films were examined over a broad BW–starch mass ratio (0.3–0.7). Emulsified, surfactant-free starch/BW films were successfully obtained at a productivity of 0.55 m2 film h−1. The water contact angle increased nearly by 100% at 30 wt% BW, leading to remarkable reductions in WVP. BW droplets well distributed within the starch matrix played a key role in enhancing the water barrier properties of films. CSC of starch/BW films offers a basis to design new hydrophobic formulations for applications that require biodegradable plastics with high moisture resistance.  相似文献   

10.
Sorghum wax, sorbitol, glycerin, and soy protein isolate (SPI) composite films were prepared. Effects of sorghum wax, sorbitol, and glycerin concentrations on various films were evaluated using response surface methodology. All independent variables significantly (P<0.05) affected film water vapor permeability (WVP), tensile strength (TS), elongation at break (E), total color difference, and total soluble matter (TSM). Increasing the sorghum wax concentration decreased WVP and E. As sorbitol content increased in the composite films, WVP and TS increased. Sorbitol had a critical point of 2–5 g/5 g SPI for low values of TSM. The addition of sorbitol contributed more to the properties of the film than did glycerin.  相似文献   

11.
《国际聚合物材料杂志》2012,61(13):1056-1069
Gelatin-based polyvinyl alcohol (PVA) films were prepared (using a casting process) by mixing aqueous solutions of gelatin and PVA in different ratios. Monomer 1, 4-butanediol diacrylate (BDDA) was dissolved in methanol. Films containing 95% gelatin + 5% PVA were soaked in 3% BDDA monomer (w/w). These films were then irradiated under gamma radiation (60Co) at different doses (50–500 krad) at a dose rate of 350 krad/h. The physico-mechanical and thermal properties of these films were evaluated. It was evident that 5% PVA-containing gelatin blend film exhibited the highest tensile strength (TS) value at 50 krad (51 MPa), which was 46% higher than that of non-irradiated blend films. It was also found that incorporation of PVA significantly reduced the TS value of the blend films compared to the raw film, whereas elongation at break (Eb) value was increased. A significant improvement of the blend films was also confirmed by thermogravimetric analysis (TGA) and thermo-mechanical analysis (TMA) when the acrylate group (from BDDA) was introduced into the film.  相似文献   

12.
The dispersion of MMT‐Na+ (montmorillonite) layers in a chitosan polymer matrix, using the homogenization, was performed. The effect of shear rate was characterized on the mechanical, barrier, and structural properties of nanocomposites. Elongation at break (EAB) was unaffected by shear rate, which decreased after homogenization, increased above 13,000 rpm, however, tensile strength (TS) dramatically increased up to 59 MPa at 16,000 rpm. Water vapor permeability (WVP) and oxygen permeability (OP) of the homogenized nanocomposite decreased more than that of untreated nanocomposite and OP was not significantly changed above 16,000 rpm of shear rate. XRD result and TEM images indicated that three types of tactoids, exfoliation, and intercalation were generated and the largest distance of 18.87 Å between MMT‐Na+ layers was produced at 16,000 rpm. The results indicate that homogenization was a beneficial method for effectively dispersing MMT‐Na+ layers in a chitosan polymer matrix and that a shear rate of 16,000 rpm was the effective condition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
An increase in the depolymerization of chitosan was found with an increased concentration of sodium perborate. Acetic anhydride was added to reacetylated chitosan in a molar ratio per gulcosamine unit, and the amide I band of IR spectra changed with the addition of acetic anhydride. Sixteen chitosans with various molecular weights (MWs) and degrees of deacetylation (DODs) were prepared. X‐ray diffraction patterns indicated their amorphous and partially crystalline states. Increases in the chitosan MW and DOD increased the tensile strength (TS). TS of the chitosan films ranged from 22 to 61 MPa. However, the elongation (E) of chitosan films did not show any difference with MW. TS of chitosan films decreased with the reacetylation process. However, E of chitosan films was not dependent on DOD. The water vapor permeabilities (WVPs) of the chitosan films without a plasticizer were between 0.155 and 0.214 ng m/m2 s Pa. As the chitosan MW increased, the chitosan film WVP increased, but the values were not significantly different. Moreover, the WVP values were not different from low DOD to high DOD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3476–3484, 2003  相似文献   

14.
Methylcellulose (MC) films were prepared by casting from its 1% aqueous solution containing 0.5% vegetable oil, 0.25% glycerol, and 0.025% Tween®80. Poly(caprolactone) (PCL) films were prepared by compression molding from its granules. Biodegradable composite films were fabricated using MC film as reinforcing agent and PCL as the matrix material by compression molding. One layer of MC film was reinforced with two layers of PCL films. The MC content in the composites was varied from 10 to 50% by weight. Mechanical, barrier, and degradation properties of PCL, MC, and composite films were evaluated. The values of puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient, and water vapor permeability (WVP) of the composites (50% MC content) were found to be 124.3 N/mm, 3.2 mm, 31%, and 2.6 g·mm/m2·day·kPa, respectively. Oxygen transmission rate (OTR) of PCL, MC, and composites (50% MC) were found to be 175, 25, 22 cc/m2/d, respectively, which indicated that composite films showed significantly lower OTR than PCL films. Degradation tests of the composite films (50% MC) were performed for 6 weeks in aqueous medium (at 25°C), and it was found that composites lost its mass slowly with time. After 6 weeks, mass and PS of the composites were decreased to 13.4 and 12%, respectively. Composite interface was studied by scanning electron microscopy (SEM). The MC film had good adhesion with PCL matrix during compression molding and suggested strong interface of the composite system. SEM image after 6 weeks of degradation showed some openings in the interface and revealed slow degradation of the MC films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Composite gels and films were prepared by the blending of hydrated gelatin as a base material and hydroxypropyl methylcellulose phthalate (HPMCP) at various mass ratios. A composite technology was applied to obtain improved mechanical, physicochemical, and antimicrobial properties of the gelatin used as a base material. We investigated the effects of different experimental conditions on the rheological and mechanical properties and antimicrobial activities of the composite gels, films, and solutions. The rheological values (storage modulus, loss modulus, and complex viscosity) of the composite solutions and gels increased with added HPMCP. Aerobic microorganisms, yeasts, and molds were not detected throughout the testing period in the gelatin–HPMCP composite solution. In contrast, many microorganisms were detected in the gelatin‐only samples beginning with day 3 of storage. The composite films exhibited relatively good mechanical and physical properties compared with the gelatin‐only film. The composite film containing HPMCP at a mass ratio greater than 1:4 did not dissolve in gastric juice (pH 1.2) for at least 2 h, but all other samples, including the gelatin‐only film dissolved in enteric juice (pH 6.8). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39597.  相似文献   

16.
Research to replace synthetic polymers with biodegradable polymers is on the rise because common plastics have generated serious ecosystem problems. Films with thermoplastic starch (TPS), poly(butylene succinate) (PBS), poly(butylene adipate-co-butylene terephthalate (PBAT), and citric acid (CA) were produced by blown extrusion. They were characterized by blow-up ratio (BUR), water vapor permeability (WVP), soluble ratio (SR), water sorption isotherm, and thermogravimetric (TG) techniques. Films were uniform and showed BUR > 205%. The different proportions of PBS and PBAT significantly influenced the WVP of the films. All samples had WVP with an order of magnitude similar to other blends with high starch content (10−6 g m−1 day−1 Pa−1). CA efficiently decreased the WVP of the PBS/PBAT/TPS formulations (15/15/70% and 20/10/70% by mass) by 25.2% and 24.7% compared to the acid-free formulations. There was no significant difference in SR (19.0%–20.1%). These materials were sensitive to moisture since the equilibrium moisture content increased pronouncedly from water activity of 0.5. Films showed good thermal stability, with a maximum decomposition temperature close to pure polyesters. CA did not increase the thermal stability of blends, probably because of the low content used (0.1%). Given the outcomes of this study, these films could be deemed appropriate for applications in food packaging.  相似文献   

17.
Gelatin films were prepared from gelatin granules in an aqueous medium by casting. Tensile strength (TS) and elongation at break (Eb%) of the films were found to be 29.2?MPa and 4.9%, respectively. Gelatin films were irradiated under gamma and UV radiation with different doses. Gamma treated gelatin films showed higher TS and Eb% over untreated ones, and even higher than that of the UV treated films. A series of gelatin solutions (formulations) was prepared by blending varying percentages (2–10% by wt) of 2-ethylhexyl acrylate (EHA) and then the films were prepared. Some EHA-blended gelatin films were irradiated under gamma radiation at various doses (50–500?krad) and other films were cured under UV radiation at different intensities (10–30 UV passes). EHA-blended?+?gamma treated gelatin films showed the highest mechanical properties than that of the EHA-blended?+?UV treated films. The degradation properties present in the soil were determined for the pure and treated films. It was observed that EHA-blended?+?gamma treated gelatin film degrades more than that of the EHA-blended?+?UV treated films.  相似文献   

18.
Carbon nanotube (CNT) reinforced (0.05–0.5% by wt) polycaprolactone (PCL)‐based composites were prepared by compression molding. Addition of 0.2% CNT caused a 131% improvement of tensile strength (TS) of PCL films. The tensile modulus (TM) and elongation at break (Eb) of PCL were also significantly improved with the addition of CNT. The water vapor permeability of PCL was 1.51 g·mm/m2·day but 0.2% CNT containing PCL films showed 1.08 g·mm/m2·day. Similarly, the oxygen transmission rate (OTR) of PCL films was found to decrease with the addition of CNT. But, carbon dioxide transmission rate (CO2TR) of PCL film was improved due to incorporation of CNT. Effect of gamma radiation on PCL films and CNT reinforced PCL‐based composites were also studied. The TS of the irradiated (10 kGy) PCL films gained to 75% higher than control sample. The TS of the 0.2% CNT reinforced composite film was reached to 41 MPa at 15 kGy dose. The barrier properties of non‐irradiated and irradiated (10 kGy) PCL films and composites (0.2% CNT reinforced) were also measured. Both PCL films and composites showed lower values of WVP upon irradiation and indicated better water vapor barrier. The OTR and CO2TR of the irradiated (10 kGy) PCL films and composites were decreased compared to their counterparts. Surface and interface morphologies of the composites were studied by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The aim of this work was to study the preparation of bilayer films formed by soy protein isolate (SPI) and polyhydroxybutyrate (PHB). This was done using the lowest possible concentration of PHB to improve the functionality of SPI films as food packaging or for agricultural uses, specially reducing their water vapor permeability (WVP). SPI films are environmentally friendly since they are biodegradable and come from renewable sources but they are brittle and have high water permeability. Even for the lowest concentration analyzed, PHB managed to form a homogeneous layer that successfully covered up the SPI film surface. All bilayers films showed a significant reduction of WVP of SPI films, and those with the highest PHB content showed the highest elastic Young's modulus and mechanical strength while maintaining a good elongation and low Tg value, similar to that of SPI. Despite of their hydrophobicity differences, a good adherence of both layers was achieved, which allowed to improve the mechanical and barrier properties of the SPI coated films with respect to films formed by both biopolymers separately. The combination of both SPI and PHB seems to be a good alternative to prepare a biodegradable material taking advantages of the best properties of each component.  相似文献   

20.
Zein is a hydrophobic protein produced from maize. Biodegradable zein films without additional reagents were prepared using various controlled drying conditions. The zein films were transparent. Mechanical properties (tensile strength and puncture strength), gas permeability, and water vapor permeability (WVP) of the zein films were measured. The tensile strengths of the zein films were between 7 and 30 MPa and the puncture strengths between 37 and 191 MPa. The zein films had higher oxygen permeability than carbon dioxide permeability. The lowest WVP of the zein film was 0.012×10−9 g·m/m2·s·Pa. We found differences in the WVP between the sides of the zein films; i.e., the air side of the zein film had a higher WVP than the basal side of the zein film when the films were exposed to high humidity during testing. This indicates a relationship between the WVP of the zein film and the contact angle of the zein film. The mechanical properties of the zein film depended on the drying conditions during preparation. Zein films with various useful physical mechanical properties were produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号