首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
低钙硅酸盐矿物在一定湿度下能够与二氧化碳发生反应,反应产物能够迅速凝结、硬化形成致密的硬化体。为了更好地研究和利用低钙硅酸盐矿物的碳化硬化性能,综述了低钙硅酸盐矿物的碳化反应过程、碳化硬化机理等方面的研究进展。低钙硅酸盐矿物碳化形成的碳酸钙晶体和高度聚合的非晶态二氧化硅凝胶是硬化体强度增长的主要来源,并且低钙硅酸盐矿物组成、结构及其与胶凝性能的关系,碳化反应及硬化机理,碳化硬化体的结构和耐久性等方面需要进一步系统研究。  相似文献   

2.
前言钙矾石是硬化水泥浆体的重要组分之一,它对水泥石的结构和性能有重要影响。从钙矾石为基础的膨胀和自应力水泥、超硫酸盐水泥、硫铝酸盐早强水泥和低碱度水泥等都有相当数量的钙矾石,并且以它作为早强组分的新品种水泥正在不断增多。钙矾石的形成不仅是上述几种水泥水化中的一个重要反应,而且也是硅酸盐水泥早期水化和含硫酸盐的环境水与硬化浆体之间的一个重要反应。如水泥浆体的缓凝,膨胀水泥混凝土中自应力的发展以及混凝土的硫酸盐侵蚀等,都与钙矾石的形成有关。  相似文献   

3.
制备了一种以3CaCO3·2SiO2(C3S2)为主要矿物组成的低钙水泥熟料,用碳化的方式使熟料硬化,研究了这种熟料矿物的形成温度、碳化硬化过程及力学性能。结果表明:C3S2熟料的形成温度范围为1300~1460℃,其碳化产物为CaCO3,试样在120℃碳化3、7d的抗压强度分别达到32和43MPa。该低钙水泥具有低的CO2排放量,且碳化硬化过程耗用大量的CO2,同时,由于低钙且其熟料自粉化,因此具有显著的低碳排放和节能特点。  相似文献   

4.
硅酸二钙既是硅酸盐水泥熟料的主要矿物,也是硫铝酸盐水泥熟料的主要矿物,并且有可能成为吸收捕集二氧化碳材料的重要矿物。发展以硅酸二钙为主要矿物组成的低钙、低碳排放胶凝材料正在成为研究热点。本文在简述硅酸二钙结构及其晶型转变的基础上,综述分析了硅酸二钙在高温合成过程中外来离子对其结构与活性的影响;硅酸二钙在水化阶段液相中外来离子对其活性发挥的影响,以及利用硅酸二钙在结构上易发生碳化反应的特点,制备可吸收二氧化碳材料的现状。在此基础上,展望了硅酸二钙结构与活性研究及其应用的发展趋势。  相似文献   

5.
抗碳化性能是混凝土耐久性的重要方面.以水玻璃与氢氧化钠(NaOH)为碱组分,粒化高炉矿渣为胶凝材料,研究了碱矿渣水泥的抗碳化性能,并分析了碱矿渣水泥易于发生碳化的主要原因.结果表明:与硅酸盐水泥相比,碱矿渣砂浆的碳化程度较大,碳化未引起碱矿渣水泥石干燥收缩的增加.碱矿渣水泥基胶凝材料硬化体碳化程度较大的主要原因是其水化产物不存在Ca(OH)2、硬化体孔溶液的高碱性及较大的干燥收缩.  相似文献   

6.
作为水泥基材料的矿物掺合料,石灰石粉对它的凝结硬化、微观结构和耐久性能会有显著影响。本文概述了石灰石粉在水泥基材料中的4个作用:晶核、填充、化学和稀释作用。在一定的掺量范围内,石灰石粉的粒径越小或者掺量越大,能加速硅酸盐水泥的水化、改善孔结构和硬化水泥浆体的界面,从而提高基体性能。当石灰石粉粒径较大或者掺量过多时,石灰石粉反而起稀释作用,降低基体性能。然后基于石灰石粉的4个作用机理,综述了其对水泥基材料渗透性、碳化性能、硫酸盐腐蚀、抗冻性、钢筋锈蚀的影响。最后对掺石灰石粉水泥基材料的进一步研究工作提出了建议。  相似文献   

7.
近年来,有关复合胶凝材料的水化硬化机理的研究取得了较大进展。硅酸盐水泥在不同水化阶段的反应机理被广泛深入地探讨,建立了一些水泥基材料水化动力学和浆体微结构形成的预测模型。越来越多的矿物掺合料用于混凝土的制备。本文重点总结了硅酸盐水泥早龄期水化机理、矿物掺合料对硅酸盐水泥水化的影响以及复合胶凝材料反应过程模拟的研究进展。  相似文献   

8.
本文研究了聚丙烯纤维对碱矿渣混凝土抗碳化性能及碱矿渣硬化水泥浆体微观孔结构的影响,对硬化碱矿渣浆体的孔隙率、碱矿渣混凝土水化产物以及碳化深度进行了测试.结果表明,聚丙烯纤维能改善碱矿渣混凝土的微孔结构与抗碳化性能.当聚丙烯纤维掺量为0.9 kg/m3时,碱矿渣混凝土28 d龄期的孔隙率降低1%o,碳化深度降低25.9%,且随纤维掺率的提高,其抗碳化性能提高更加明显.SEM分析结果表明,纤维与硬化浆体紧密结合并有效改善硬化浆体的孔结构,而粉煤灰的掺入使硬化浆体的结构变得较为疏松.  相似文献   

9.
近几年来,我厂新建了一个年产8000吨的水泥车间,以石灰碳化煤球灰渣为原料,生产普通硅酸盐水泥。所生产的水泥经过实践使用,证明可适用于工业和民用建筑。这样,不但清除了化肥生产中的废渣,又增产了水泥,还可降低化肥成本。一、石灰碳化煤球灰渣作为烧制水泥原料的探讨石灰碳化煤球经造气炉1100~1200℃的高温造气后,排出的灰渣含有大量CaO、SiO_2、Al_2O_3,还有低钙矿物2CaO·SiO_2等物料。经化学分析表明:石灰碳化煤球灰渣和普通硅酸盐熟料对比是除在含量方面硅高、钙低外,几乎和熟料是类似成份,其化学成份如下:  相似文献   

10.
使用特殊的增黏剂与聚羧酸减水剂,制备了掺加石灰石粉、高炉矿渣、硅灰等混合材的普通波特兰水泥浆体和和低热硅酸盐水泥浆体(水粉比为1.0)。这些水泥浆体在20℃的水中养护4年后基本完全水化。这些硬化水泥浆体在5%(质量分数)CO2、相对湿度66%和温度20℃条件下进行碳化,对比研究碳化前后水泥浆体孔结构的变化。结果显示:碳化浆体内孔直径大于10nm的孔体积明显减少;碳化浆体的孔径分布向大孔径范围偏移;掺加混合材的硬化水泥浆体结构明显趋于松散;与不掺加任何混合材的水泥浆体相比,掺加混合材的水泥浆体的孔径更大。  相似文献   

11.
常钧  房延凤  李勇 《硅酸盐学报》2014,42(11):1377-1382
废弃水泥石、钢渣等碳酸化固定CO2不仅可以缓解温室效应还可以实现废弃物的再利用,同时制备出性能优良的建材制品。为了研究废弃水泥石矿物组成的碳酸化机理,探讨了钙硅比对水化硅酸钙加速碳化的影响。结果表明:随着钙硅比增加,水化硅酸钙(C-S-H)碳化率逐渐降低,高钙硅比的C-S-H具有相对粗大的孔结构使得早期的碳化速率增加;碳化产物中文石、球霰石、方解石在不同钙硅比时所占比例不同,钙硅比≤0.67时文石占较大比例,钙硅比≥1.00时方解石为主要碳化产物,钙硅比=0.83时球霰石含量最大;加速碳化条件下形成的碳酸钙分解温度分成两部分,在400~620℃范围内文石和球霰石都分解,方解石在650~800℃范围内分解。  相似文献   

12.
基于节能减排和应对气候变化的新要求,研究开发低钙水泥有多方面的重要意义。试验分别采用化学试剂和工业原料,运用化学分析、X-射线衍射、岩相分析等测试手段,初步探讨了高强低钙硅酸盐水泥制备关键技术。结果表明:工业原料中的微量元素能够解决高强低钙硅酸盐水泥的粉化问题;在试验设计的矿物组成和煅烧制度下,w(C2S)设计值在40%~45%,煅烧温度1400~1450℃时熟料性能最优。  相似文献   

13.
以河北迁安铁尾矿砂为原料,采用机械与化学-机械活化粉磨制得铁尾矿粉为矿物掺合料,研究了其对混凝土耐久性的影响.通过研究其对硬化浆体的孔结构,混凝土的抗氯离子渗透性能,抗碳化性能以及抗冻融性能的影响得出:化学-机械活化铁尾矿粉最大程度地降低了硬化浆体的总孔隙率与孔隙连通性,同时其抗渗性能优于空白水泥、粉煤灰以及机械活化铁尾矿粉,并且具有良好的抗冻性;但其抗碳化能力略低于空白水泥与机械活化铁尾矿粉混凝土.  相似文献   

14.
王子明  王杰  甘杰忠  张佳乐 《硅酸盐通报》2020,39(10):3045-3054
速凝剂是喷射混凝土不可缺少的化学外加剂,但目前对速凝剂速凝及硬化作用机理方面的认识存在分歧和争议.本文从“水泥-速凝剂-水”系统的角度出发,综述分析了不同类型的速凝剂对“水泥-速凝剂-水”系统水化反应特征的影响和其快速凝结硬化的机理.明确了水化产物中的水化硫铝酸盐在充水孔隙中的快速形成是实现速凝的主要原因.高硫型水化硫铝酸钙(AFt)向低硫型水化硫铝酸钙(AFm)的晶型转化导致硬化浆体孔隙率增加,并延缓硅酸盐矿物的水化,是铝酸盐类速凝剂引起喷射混凝土后期强度降低的原因.水泥的化学组成对“水泥-速凝剂-水”系统的水化进程和凝结硬化具有重要的影响.喷射工艺的高剪切作用会加速AFm形成,抑制硅酸盐矿物的水化,对掺加碱性速凝剂的喷射混凝土强度发展有不利影响.  相似文献   

15.
杜家桢  施惠生 《粉煤灰》2007,19(1):27-28
采用化学结合水、SEM、XRD对掺有活化煤矸石的硬化水泥浆体的性能和微观结构进行了研究.研究发现,煅烧后的煤矸石具有火山灰活性,掺有煤矸石的水泥浆体的结合水量低于不掺煤矸石的硅酸盐水泥,但后期增长较快;掺有煤矸石的水泥浆体结构较疏松,孔隙较多;煤矸石掺量的增加促进了水泥熟料矿物的水化,而且掺量越大,越有利于熟料矿物的水化.  相似文献   

16.
阿利特-硫铝酸钡钙水泥抗硫酸盐侵蚀性能的研究   总被引:1,自引:1,他引:0  
本文研究了石膏掺量对阿利特-硫铝酸钡钙水泥抗硫酸盐侵蚀性能的影响,并与硅酸盐水泥进行了比较;利用XRD,SEM-EDS等测试方法对侵蚀后水泥水化产物的物相组成和形貌进行了分析.研究结果表明:阿利特-硫铝酸钡钙水泥具有良好的抗硫酸盐侵蚀性能.当石膏掺量为5%时,阿利特-硫铝酸钡钙水泥的抗蚀系数达1.31,而硅酸盐水泥的抗蚀系数仅为0.94.石膏对阿利特-硫铝酸钡钙水泥硬化浆体的致密性有较大影响,进而影响水泥的抗硫酸盐侵蚀性能.同时,对阿利特-硫铝酸钡钙水泥的抗侵蚀机理进行了初步分析.  相似文献   

17.
段锦  李寒旭  郝华东  陶然 《硅酸盐通报》2016,35(12):3936-3941
以高灰熔融温度长平煤为对象,分别向其中添加单助熔剂CaO、MgO和钙镁复合助熔剂,在高温还原性气氛下,分别利用X-射线衍射仪(XRD)、扫描电子显微镜-能谱仪(SEM-EDX)研究钙镁复合助熔剂对煤灰熔渣晶体矿物转化过程、微观形貌和微区化学组成的影响,揭示钙镁复合助熔剂的助熔机理.结果表明:添加6%钙镁复合助熔剂(WCao/WMgo=1),可将煤灰熔融温度降至1297℃,且助熔效果优于单助熔剂CaO、MgO;煤灰熔融过程中,离子半径较小的Ca2+、Mg2+容易进入空隙中,引起硅酸盐结构重组,分别形成架状硅酸盐钙长石、岛状硅酸盐镁橄榄石、镁堇青石等;钙长石与镁橄榄石等镁质矿物之间低温共熔体的生成,是钙镁复合助熔剂能够显著降低煤灰熔融温度的主要原因.  相似文献   

18.
<正>1 概述高强低钙硅酸盐水泥,是以硅酸二钙(贝利特,C2S)为主导矿物的新型硅酸盐水泥。硅酸二钙存在α,β,γ三种晶型,在熟料烧成和冷却过程中,高水化活性的α,β晶型容易向几乎没有水化活性的γ型转变,导致熟料粉化和水泥强度锐减。因此,贝利特矿物的稳定与活化技术是制备高强低钙水泥的关键,与传统的硅酸盐水泥相比,高强低钙水泥需要更稳定的生料分解、熟料烧成和快速冷却过程,也就意味着对反应温度、压力、流速等关键过程  相似文献   

19.
实验研究了糖类中葡萄糖、蔗糖及其衍生物葡萄糖酸钠、糖钙对硅酸盐水泥水化热性能以及初始结构电性能的影响,结合XRD图谱分析和SEM研究糖类及其衍生物极性作用基团的改变对水泥水化历程的影响规律与作用机理.结果表明:糖类能够有效延缓水化放热和初始结构的形成,但超剂量将导致长时间不放热和结构长期不发展;适当掺量的葡萄糖酸钠能够有效抑制了C3S的初期水化,而不影响其最终水化;同掺量条件下,对水泥浆体结构发展的延缓程度大小为:蔗糖>葡萄糖>葡萄糖酸钠>糖钙.  相似文献   

20.
稠油热采常使用具有早强和耐高温特性的铝酸钙特种水泥完成固井作业,为保证固井安全和采油效率,需明确早期水热养护对水泥硬化体结构稳定性的影响。本文研究了20、50、80℃下水泥的强度发展、矿物相组成和微观结构。结果表明,水热养护过程中铝酸钙水泥中的钙铝黄长石、CAH10和C2AH8等主要矿物相逐步转变为胶结性差的颗粒状水榴石,导致硬化体结构疏松多孔,进而引发硬化体抗压强度衰退。掺入粉煤灰和矿渣无法有效抑制晶型转变和结构破坏,但六偏磷酸钠改性可使矿物相保持结构稳定性,六偏磷酸钠溶出的Na+、HPO-4与铝酸钙水泥溶出的Ca2+、[AlO4]5-反应生成水化磷铝酸钠钙(N-C-A-P-H)凝胶相产物,进一步提高了硬化体的致密度和胶结特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号