首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用改进Hummers法制备氧化石墨烯(GO),并以聚乙烯亚胺为“桥接分子”制备GO/羧基丁腈橡胶(XNBR)纳米复合材料,考察GO/XNBR纳米复合材料的微观形貌、力学性能和耐有机溶剂渗透性能。结果表明:GO与XNBR基体结合良好且分散均匀;GO/XNBR纳米复合材料的拉伸强度由纯XNBR胶料的3.9 MPa提高到7.2 MPa(GO用量为0.7份),提高了约1.8倍;随着GO用量增大,GO/XNBR纳米复合材料对有机溶剂的耐渗透时间明显延长。  相似文献   

2.
分别将聚苯乙烯树脂(PS)与钠基蒙脱土(Na-MMT)和有机化蒙脱土(OMMT)通过熔融复合制备纳米黏土改性的复合材料。通过X射线衍射(XRD)对复合材料的微观结构进行了分析,采用HAAKE流变仪和熔体流动速率仪研究了复合材料的熔体流动行为。结果表明,Na-MMT在与PS熔融复合前后,其片层间距没有发生变化,PS分子链没有插入蒙脱土片层之间,所形成的是一种填充型复合材料。OMMT在熔融复合后,片层间距显著增大,与PS分子链形成了插层复合结构。蒙脱土含量相同时,PS/Na-MMT复合体系的熔体流动性能比PS/OMMT体系更好。研究认为,熔融复合过程中PS分子链的断链和2种复合材料结构上的差异是影响2种材料流动性能的主要因素。  相似文献   

3.
熔融插层法制备聚乳酸/蒙脱土纳米复合材料的研究进展   总被引:1,自引:0,他引:1  
综述了使用熔融插层法制备聚乳酸(PLA)/蒙脱土(MMT)纳米复合材料及其表征与性能的研究进展。研究表明,对MMT进行有机改性,可以增大MMT片层间距,使PLA/MMT形成剥离和插层的结构,同时有效地提高PLA/MMT复合材料的性能。随着MMT含量的增加,MMT片层粒子容易形成团簇,不利于结构分散以及性能提高;由于MMT片层粒子在PLA基体中良好分散,形成剥离/插层的结构,有利于抑制PLA分子链运动,从而提高了PLA的韧性、热稳定性、气体阻透性能;MMT片层粒子作为二维异向成核剂,可以提高复合材料的结晶度和结晶速率;分散的MMT片层粒子形成了一种空间连接结构,大大提高了复合材料的熔体强度,有利于拓宽其加工窗口;同时MMT结构中的末端羟基可以增加复合材料的生物降解速率。  相似文献   

4.
《塑料》2017,(6)
采用液相共混-热压法制备碳纳米管/聚丙烯复合材料,测试其冲击性能并观察冲击断面及晶粒形貌。结果表明:液相法可将2.0%以内的碳纳米管均匀地分散在聚丙烯中,均匀分散的碳纳米管能提高复合材料的冲击性能,并随着碳纳米管添加量的增加而增大,当碳纳米管添加量为2.0%时,复合材料的冲击强度达到5.47 kJ/m~2,为纯PP的2.5倍;而且,复合材料的断裂特征由脆性断裂转变为韧性断裂,这主要归因于碳纳米管在基体中呈网状分布,且均匀分散,充分发挥了其增韧作用,同时,碳纳米管能细化聚丙烯晶粒,具有细晶强化效应。  相似文献   

5.
邓成业  黄汉雄 《化工学报》2013,64(10):3824-3830
采用双螺杆挤出机制备聚丙烯(PP)基高含量(33 phr)埃洛石纳米管(HNTs)复合材料,从挤出机沿程3个位置和机头出口处取样,观察样品的微观结构并测试其流变性能和热稳定性。结果表明,本文设置的螺杆结构提供的分散和分布混炼使PP/HNTs复合材料中HNTs团聚体的尺寸快速减小,HNTs在PP基体中分散得越来越均匀,使挤出机沿程3个位置所取复合材料样品的低频区储能模量逐渐提高、末端斜率逐渐降低、松弛时间逐渐变长。机头入口所取复合材料样品的热稳定性要比机头出口样品的高,这归因于前者样品中较为无序且较均匀排列的HNTs纳米空腔能更有效地诱捕降解产物。  相似文献   

6.
利用可膨胀石墨与聚丙烯(PP)熔融混炼在三种不同加工温度下(180,200和220℃)制备PP/膨胀石墨(EG)复合材料样品,观察样品的微观结构,测试其流变性能和导电性能.结果表明,EG在PP基体中的分散状态随着加工温度的升高而改善,这由于混炼过程中可膨胀石墨在PP基体发生了原位膨胀,EG片层之间的间距增大,且加工温度...  相似文献   

7.
以石墨、浓硫酸、高锰酸钾和双氧水等为原料,通过Hummers法制备了氧化石墨烯(GO)分散液,对其冷冻干燥得到GO粉体,将GO粉体与熔融聚丙烯(PP)树脂共混制备PP/GO复合材料,采用FTIR、AFM、TEM、XRD、DSC及导热仪和氧指数测定仪等对GO及PP/GO复合材料的结构和性能进行了表征。结果表明,GO能够以双片层形式均匀地分散在PP基体中,GO/PP复合材料具有致密均匀的微观结构,其力学性能、耐热、阻燃和热传导等性能比对照样品(单纯PP树脂)有显著提高。当GO掺量为0.4%(以PP的质量为基准,下同)时,PP/GO复合材料的拉伸强度、弯曲强度和冲击强度比对照样品分别提高了29.6%、33.6%和62.7%,熔点从154.5℃提高为174.2℃,热导率提升了205.3%,极限氧指数从18.0提高到27.6。  相似文献   

8.
为了解决氧化石墨烯(GO)纳米片层在水泥基体中的分散问题,制备了丙烯酸(AA)、丙烯酰氧乙基三甲基氯化铵(AAC)和丙烯磺酸钠(SAS)的共聚物(PAAS),PAAS与GO纳米片层形成PAAS/GO复合物并显示出分散作用。结果表明,w(PAAS)=2%分别与w(GO)=0.01%、0.02%和0.03%形成的复合物可使水泥基体分别形成由花状晶体、多面体状晶体和针状晶体构成的规整有序的微观结构,28 d时的抗折强度分别比对照样提高了63.0%、90.4%和87.9%,抗压强度分别提高了32.6%、74.2%和71.3%,同时这些水化晶体容易生长在裂缝、孔洞等缺陷处,具有修复结构缺陷的效果。PAAS通过与GO纳米片层形成复合物实现了GO在水泥基材料中的均匀分散以及对水泥基材料微观结构和性能的调控。  相似文献   

9.
采用机械混炼法制备了溴化丁基橡胶/天然橡胶/有机蒙脱土(BIIR/NR/OMMT)纳米复合材料,并对其结构与性能进行了表征。扫描式电子显微镜(SEM)研究表明,OMMT片层均匀地分散在橡胶基体中。这种纳米复合材料具有优异的力学性能和耐油性能。OMMT对纳米复合材料的耐寒性能没有影响,添加OMMT之后,该纳米复合材料的起始分解温度略有降低,失重区域明显移向高温一侧。  相似文献   

10.
通过熔体插层法制备氯丁橡胶(CR)/有机粘土纳米复合材料(CRCNs),研究有机粘土用量对CRCNs拉伸诱导结晶行为的影响。结果表明:随着应变增大,CRCNs的应力增大,当应变达到一定值时,应力迅速增大,诱导结晶集中产生;随着有机粘土用量增大,CRCNs发生拉伸诱导结晶行为的应变增大;当有机粘土用量为5份时,CRCNs的拉伸性能较好,CRCNs中橡胶分子链成功插层进入有机粘土片层,有效扩大了有机粘土层间距,有机粘土与橡胶基体界面作用较强,在橡胶基体中的分散较均匀。  相似文献   

11.
An effective approach to prepare polyimide/siloxane‐functionalized graphene oxide composite films is reported. The siloxane‐functionalized graphene oxide was obtained by treating graphene oxide (GO) with 1,3‐bis(3‐aminopropyl)‐1,1,3,3‐tetra‐methyldisiloxane (DSX) to obtain DSX‐GO nanosheets, which provided a starting platform for in situ fabrication of the composites by grafting polyimide (PI) chains at the reactive sites of functional DSX‐GO nanosheets. DSX‐GO bonded with the PI matrix through amide linkage to form PI‐DSX‐GO films, in which DSX‐GO exhibited excellent dispersibility and compatibility. It is demonstrated that the obvious reinforcing effect of GO to PI in mechanical properties and thermal stability for PI‐DSX‐GO is obtained. The tensile strength of a composite film containing 1.0 wt% DSX‐GO was 2.8 times greater than that of neat PI films, and Young's modulus was 6.3 times than that of neat PI films. Furthermore, the decomposition temperature of the composite for 5% weight loss was approximately 30 °C higher than that of neat PI films. © 2015 Society of Chemical Industry  相似文献   

12.
Graphene oxide (GO) was prepared by oxidation of graphite using the Hummers method, and was modified by isocyanate to obtain dispersed GO sheets in dimethylformamide. Polystyrene (PS)/GO composites were prepared by solution blending, and their morphologies and properties were characterized. The addition of GO increased the glass transition temperature of the PS/GO composites. The storage modulus and thermal stability of the composites were also improved compared with PS. Foams of PS and PS/GO composites were prepared by supercritical carbon dioxide foaming. The composite foams exhibited slightly higher cell density and smaller cell size compared with the PS foam, indicating the GO sheets can act as heterogeneous nucleation agents.  相似文献   

13.
This study reports a green and powerful strategy for preparing cellulose nanocrystal (CNC)/graphene oxide (GO)/natural rubber (NR) nanocomposites hosting a 3D hierarchical conductive network. Due to good dispersibility and amphiphilic nature of CNC, well dispersed CNC/GO nanohybrids were prepared. Hydrogen bonding interactions between CNC and GO greatly enhanced the stability of the CNC/GO nanohybrids. CNC/GO nanohybrids were introduced into NR latex under sonication and the mixture was cast. Self-assembled CNC/GO nanohybrids preferentially dispersed in the interstice between latex microspheres allowing the construction of a 3D hierarchical conductive network. By combining strong hydrogen bonds and 3D conductive network, both electrical conductivity and mechanical properties (tensile strength and modulus) have been significantly improved. The electrical conductivity of the nanocomposite with 4 wt% GO and 5 wt% CNC exhibited an increase of nine orders of magnitude compared to the nanocomposite with only 4 wt% GO; meanwhile, the electrical percolation threshold was 3-fold lower than for NR/GO composites.  相似文献   

14.
In this article, the particular phase morphology of immiscible polyamide 12/polystyrene (PA12/PS) blends prepared via in situ anionic ring‐opening polymerization of laurolactam (LL) in the presence of polystyrene (PS) was investigated. Scanning electron microscopy (SEM) and Fourier Transform infrared Spectroscopy (FTIR) were used to analyze the morphology of the blends. The results show that the PS is dispersed as small droplets in the continuous matrix of PA12 when PS content is 5 wt%. However, when the PS content is higher than 10 wt%, two particular phase morphologies appeared. Firstly, dispersed PS‐rich particles with the spherical inclusions of PA12 can be found when PS content is between 10 and 15 wt%. Then the phase inversion occurred (the phase morphology of the PA12/PS blends changed from the PS dispersed/PA12 matrix to PA12 dispersed/PS matrix system) when PS content is 20 wt% or higher, which is unusual for polymer blends prepared via conventional methods such as mixing, hydrolytic polycondensation and so on. The formation of this particular phase morphology development was simply elucidated via a phase inversion mechanism. Furthermore, the stability of the phase morphology of the PA12/PS blends after annealing at 230°C was also investigated via SEM. POLYM. ENG. SCI., 52:1831–1838, 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
Binary composite of graphene/poly(ethylene oxide) (PEO) with microwave absorption property is prepared by in situ reduction process. Graphite oxide (GO) is prepared from flake graphite by modified Hummers' method and further dispersed in distilled water to get GO solution. Then, PEO powder is slowly added into GO solution to get GO/PEO solution, and graphene/PEO composites is prepared via a facile and quick reduction process in GO/PEO solution. PEO and graphene/PEO composites are characterized by scanning electron microscopy, atomic force microscopy, thermo gravimetric analysis, and vector network analyzer. The results show that graphene is uniformly dispersed in PEO matrix because GO and PEO can be uniformly dispersed at molecular level due to their water‐solubility and the agglomeration of graphene can be prevented by PEO macromolecular chains during in situ reduction process. Graphene/PEO composite has better thermal stability than PEO, which can be explained by the graphene restoration of sp2 bonded carbon structure. Meanwhile, graphene/PEO composite shows excellent microwave absorption property at low grapheme content. The minimum reflection loss of graphene/PEO composite is up to −20.0 dB when the content of graphene is only 1 wt%. POLYM. COMPOS., 35:461–467, 2014. © 2013 Society of Plastics Engineers  相似文献   

16.
Jatropha curcas oil based alkyd/epoxy/GO bionanocomposites were prepared by direct solution blending of alkyd/epoxy blend matrix with GO nano filler. Structures and properties of the bionanocomposites were characterized with Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and tensile testing. X-ray diffraction and transmission electron microscopy study demonstrates the formation of highly exfoliated GO layers and its homogeneous dispersion throughout the polymer matrix with 1 and 3 wt% GO. However, the intercalated structure is predominant with 5 wt% GO. The homogeneous dispersion and the strong interaction of the GO layers and the polymer matrix induced the significant improvement in thermal and mechanical properties of the bionanocomposites. The tensile strength and elastic modulus of the bionanocomposite increased by 133% and 68% respectively with 3 wt% GO loading. The thermal stability of the bionanocomposite improved by 39 °C and Tg is shifted toward higher temperature by 20 °C as compared to the pristine polymer. Incorporation of GO significantly decreases the curing time of the alkyd/epoxy resin blend.  相似文献   

17.
Graphene oxide (GO) is prepared and introduced into epoxy resins through a wet-transfer migration technique using a three-roll mill. The results of TEM, XRD and digital microscope observation show that good dispersion of GO is achieved without using any additives. The mechanical and thermal properties of GO/epoxy (GO/EP) adhesives are enhanced with GO incorporated. A 10.2% increase in Young's modulus and a 56.3% increase in elevated-temperature (120 °C) lap shear strength (LSS) was observed on addition of 1.0 wt% GO, compared to the neat epoxy adhesive. Increased glass transition temperature and improved thermal stability of the GO/EP adhesives are also observed in the DMA and TG analysis. Moreover, the toughness of the GO/EP adhesives is improved and much rougher fracture surface can be observed compared with the neat epoxy adhesive. No GO agglomeration can be observed in the SEM images of GO/EP adhesive with 1.0 wt% loading.  相似文献   

18.
Polyimide (PI) nanocomposites with both enhanced thermal conductivity and dimensional stability were achieved by incorporating glycidyl methacrylate‐grafted graphene oxide (g‐GO) in the PI matrix. The PI/g‐GO nanocomposites exhibited linear enhancement in thermal conductivity when the amount of incorporated g‐GO was less than 10 wt%. With the addition of 10 wt% of g‐GO to PI (PI/g‐GO‐10), the thermal conductivity increased to 0.81 W m?1 K?1 compared to 0.13 W m?1 K?1 for pure PI. Moreover, the PI/g‐GO‐10 composite exhibited a low coefficient of thermal expansion (CTE) of 29 ppm °C?1. The values of CTE and thermal conductivity continuously decreased and increased, respectively, as the g‐GO content increased to 20 wt%. Combined with excellent thermal stability and high mechanical strength, the highly thermally conducting PI/g‐GO‐10 nanocomposite is a potential substrate material for modern flexible printed circuits requiring efficient heat transfer capability.  相似文献   

19.
Microwave‐induced reduction of graphite oxide (GO) is a promising method for rapid and scalable production of graphene. However, homogeneous incorporation of thus prepared graphene into polymer matrix is still a hard task. In this article, we present a ball‐milling assisted wet compounding method for the fabrications of microwave‐reduced GO (MRGO)/polymer composites. MRGO powders were added into a solution of polystyrene (PS) and then mechanically exfoliated in a stirring mill. Scanning electron microscopy and transmission electron microscopy investigations show that the graphene sheets have been homogeneously dispersed in the PS matrix. The composites show pronouncedly improved properties. The thermal degradation temperature of composites increased by 34°C with the addition of 5wt% MRGO in PS. Up to 76% improvement of storage modulus (at 30°C) is achieved by compounding with 10wt% MRGO.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
张琪  潘丽燕  徐荣  周守勇  钟璟 《化工进展》2018,37(12):4758-4764
通过共混法和原位聚合法成功制备氧化石墨烯(GO)/磺化聚苯并咪唑(SPBI)质子交换复合膜。用FTIR及TEM表征了复合膜的结构,并测试了复合膜的热稳定性、力学性能、尺寸稳定性、含水率、酸掺杂率、氧化稳定性及质子电导率,重点考察不同制备方法、GO的加入对GO/SPBI质子交换复合膜结构和性能的影响。实验结果表明,GO在Y-GO/SPBI-1%复合膜中呈薄片状并良好分散。添加GO后复合膜的力学性能大幅提高,拉伸强度相较于Nafion 117膜(26.65MPa)提高了2.5倍。Y-GO/SPBI-1%复合膜热稳定性稍高于G-GO/SPBI-1%复合膜。Y-GO/SPBI-1%复合膜拥有与SPBI膜相当的含水率,比G-GO/SPBI-1%复合膜的含水率提高了51.36%,表明原位聚合法制备的膜具有良好的保水能力。原位聚合法制备的复合膜具有更高的酸掺杂率和更低的酸溶胀度,提高了膜的尺寸稳定性。Y-GO/SPBI-1%质子交换复合膜在相对湿度40%、160℃下具有最高的质子电导率0.113S/cm。GO上的含氧官能团有助于复合膜中质子的跳跃,原位聚合法使GO更均匀地分散在SPBI基质中,对复合膜质子电导率的提高起到关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号