首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melanoma, the deadliest form of skin cancer, is still one of the most difficult cancers to treat despite recent advances in targeted and immune therapies. About 50% of advanced melanoma do not benefit of such therapies, and novel treatments are requested. Curcumin and its analogs have shown good anticancer properties and are being considered for use in combination with or sequence to recent therapies to improve patient outcomes. Our group previously published the synthesis and anticancer activity characterization of a novel curcumin-related compound against melanoma and neuroblastoma cells (D6). Here, two hydroxylated biphenyl compounds—namely, compounds 11 and 12—were selected among a small collection of previously screened C2-symmetric hydroxylated biphenyls structurally related to D6 and curcumin, showing the best antitumor potentiality against melanoma cells (IC50 values of 1.7 ± 0.5 μM for 11 and 2.0 ± 0.7 μM for 12) and no toxicity of normal fibroblasts up to 32 µM. Their antiproliferative activity was deeply characterized on five melanoma cell lines by performing dose-response and clonal growth inhibition assays, which revealed long-lasting and irreversible effects for both compounds. Apoptosis induction was ascertained by the annexin V and TUNEL assays, whereas Western blotting showed caspase activation and PARP cleavage. A cell cycle analysis, following cell treatments with either compound 11 or 12, highlighted an arrest in the G2/M transition. Taking all this evidence together, 11 and 12 were shown to be good candidates as lead compounds to develop new anticancer drugs against malignant melanoma.  相似文献   

2.
In an effort to discover potent anticancer agents, 2-thiouracil-5-sulfonamides derivatives were designed and synthesized. The cytotoxic activity of all synthesized compounds was investigated against four human cancer cell lines viz A-2780 (ovarian), HT-29 (colon), MCF-7 (breast), and HepG2 (liver). Compounds 6b,d–g, and 7b showed promising anticancer activity and significant inhibition of CDK2A. Moreover, they were all safe when tested on WI38 normal cells with high selectivity index for cancer cells. Flow cytometric analysis for the most active compound 6e displayed induction of cell growth arrest at G1/S phase (A-2780 cells), S phase (HT-29 and MCF-7 cells), and G2/M phase (HepG2 cells) and stimulated the apoptotic death of all cancer cells. Moreover, 6e was able to cause cycle arrest indirectly through enhanced expression of cell cycle inhibitors p21 and p27. Finally, molecular docking of compound 6e endorsed its proper binding to CDK2A, which clarifies its potent anticancer activity.  相似文献   

3.
Phytochemical investigation of the heartwood of Michelia compressa afforded forty-four compounds, which were identified by comparison of experimental and literature analytical and spectroscopic data. Some compounds were evaluated for their anti-inflammatory and anticancer bioactivities. The result showed that soemerine (1) and cyathisterol (2) exhibited significant nitric oxide (NO) inhibition, with IC50 values of 8.5 ± 0.3 and 9.6 ± 0.5 µg/mL, respectively. In addition, liriodenine (3) and oliveroline (4) exhibited cytotoxicity to human nasopharyngeal carcinoma (NPC-TW01), non-small cell lung carcinoma (NCI-H226), T cell leukemia (Jurkat), renal carcinoma (A498), lung carcinoma (A549) and fibrosarcoma (HT1080) cell lines with IC50 values in the range of 15.7–3.68 μM.  相似文献   

4.
Inhibition of the molecular chaperone heat shock protein 90 (Hsp90) represents a promising approach for cancer treatment. BIIB021 is a highly potent Hsp90 inhibitor with remarkable anticancer activity; however, its clinical application is limited by lack of potency and response. In this study, we aimed to investigate the impact of replacing the hydrophobic moiety of BIIB021, 4-methoxy-3,5-dimethylpyridine, with various five-membered ring structures on the binding to Hsp90. A focused array of N7/N9-substituted purines, featuring aromatic and non-aromatic rings, was designed, considering the size of hydrophobic pocket B in Hsp90 to obtain insights into their binding modes within the ATP binding site of Hsp90 in terms of π–π stacking interactions in pocket B as well as outer α-helix 4 configurations. The target molecules were synthesized and evaluated for their Hsp90α inhibitory activity in cell-free assays. Among the tested compounds, the isoxazole derivatives 6b and 6c, and the sole six-membered derivative 14 showed favorable Hsp90α inhibitory activity, with IC50 values of 1.76 µM, 0.203 µM, and 1.00 µM, respectively. Furthermore, compound 14 elicited promising anticancer activity against MCF-7, SK-BR-3, and HCT116 cell lines. The X-ray structures of compounds 4b, 6b, 6c, 8, and 14 bound to the N-terminal domain of Hsp90 were determined in order to understand the obtained results and to acquire additional structural insights, which might enable further optimization of BIIB021.  相似文献   

5.
Curcumin and curcuminoids have been discussed frequently due to their promising functional groups (such as scaffolds of α,β-unsaturated β-diketone, α,β-unsaturated ketone and β′-hydroxy-α,β-unsaturated ketone connected with aromatic rings on both sides) that play an important role in various bioactivities, including antioxidant, anti-inflammatory, anti-proliferation and anticancer activity. A series of novel curcuminoid derivatives (a total of 55 new compounds) and three reference compounds were synthesized with good yields using three-step organic synthesis. The anti-proliferative activities of curcumin derivatives were examined for six human cancer cell lines: HeLaS3, KBvin, MCF-7, HepG2, NCI-H460 and NCI-H460/MX20. Compared to the IC50 values of all the synthesized derivatives, most α,β-unsaturated ketones displayed potent anti-proliferative effects against all six human cancer cell lines, whereas β′-hydroxy-α,β-unsaturated ketones and α,β-unsaturated β-diketones presented moderate anti-proliferative effects. Two potent curcuminoid derivatives were found among all the novel derivatives and reference compounds: (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a). These were selected for further analysis after the evaluation of their anti-proliferative effects against all human cancer cell lines. The results of apoptosis assays revealed that the number of dead cells was increased in early apoptosis and late apoptosis, while cell proliferation was also decreased after applying various concentrations of (E)-5-hydroxy-7-phenyl-1-(3,4,5-trimethoxyphenyl)hept-1-en-3-one (compound 3) and (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) to MCF-7 and HpeG2 cancer cells. Analysis of the gene expression arrays showed that three genes (GADD45B, SESN2 and BBC3) were correlated with the p53 pathway. From the quantitative PCR analysis, it was seen that (1E,4E)-1,7-bis(3,4,5-trimethoxyphenyl)hepta-1,4-dien-3-one (compound MD12a) effectively induced the up-regulated expression of GADD45B, leading to the suppression of MCF-7 cancer cell formation and cell death. Molecular docking analysis was used to predict and sketch the interactions of the GADD45B-α,β-unsaturated ketone complex for help in drug design.  相似文献   

6.
Two new norsesquiterpenoids, solanerianones A and B (1–2), together with nine known compounds, including four sesquiterpenoids, (−)-solavetivone (3), (+)-anhydro-β-rotunol (4), solafuranone (5), lycifuranone A (6); one alkaloid, N-trans-feruloyltyramine (7); one fatty acid, palmitic acid (8); one phenylalkanoid, acetovanillone (9), and two steroids, β-sitosterol (10) and stigmasterol (11) were isolated from the n-hexane-soluble part of the roots of Solanum erianthum. Their structures were elucidated on the basis of physical and spectroscopic data analyses. The anti-inflammatory activity of these isolates was monitored by nitric oxide (NO) production in lipopolysaccharide (LPS)-activated murine macrophage RAW264.7 cells. The cytotoxicity towards human lung squamous carcinoma (CH27), human hepatocellular carcinoma (Hep 3B), human oral squamous carcinoma (HSC-3) and human melanoma (M21) cell lines was also screened by using an MTT assay. Of the compounds tested, 3 exhibited the strongest NO inhibition with the average maximum inhibition (Emax) at 100 μM and median inhibitory concentration (IC50) values of 98.23% ± 0.08% and 65.54 ± 0.18 μM, respectively. None of compounds (1–9) was found to possess cytotoxic activity against human cancer cell lines at concentrations up to 30 μM.  相似文献   

7.
β-pinene is a monoterpene isolated from turpentine oil and numerous other plants’ essential oils, which has a broad spectrum of biological activities. In the current work, six novel β-pinene quaternary ammonium (β-PQA) salts were synthesized and evaluated in vitro for their antifungal, antibacterial and anticancer activities. The in vitro assay results revealed that compounds 4a and 4b presented remarkable antimicrobial activity against the tested fungi and bacteria. In particular, compound 4a showed excellent activities against F. oxysporum f.sp. niveum, P. nicotianae var.nicotianae, R. solani, D. pinea and Fusicoccumaesculi, with EC50 values of 4.50, 10.92, 9.45, 10.82 and 6.34 μg/mL, respectively. Moreover, compound 4a showed the best antibacterial action against E. coli, P. aeruginosa, S. aureus and B. subtilis, with MIC at 2.5, 0.625, 1.25 and 1.25 μg/mL, respectively. The anticancer activity results demonstrated that compounds 4a, 4b, 4c and 4f exhibited remarkable activity against HCT-116 and MCF-7 cell lines, with IC50 values ranged from 1.10 to 25.54 μM. Notably, the compound 4c displayed the strongest cytotoxicity against HCT-116 and MCF-7 cell lines, with the IC50 values of 1.10 and 2.46 μM, respectively. Furthermore, preliminary antimicrobial mechanistic studies revealed that compound 4a might cause mycelium abnormalities of microbial, cell membrane permeability changes and inhibition of the activity of ATP. Altogether, these findings open interesting perspectives to the application of β-PQA salts as a novel leading structure for the development of effective antimicrobial and anticancer agents.  相似文献   

8.
Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6‒16). Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 μM, respectively, against A549 and MCF-7 cells. The colony-formation assay demonstrated that compound 1 (5 μM) obviously decreased A549 and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.  相似文献   

9.
A new series of hybrid compounds with tropinone and thiazole rings in the structure was designed and synthesized as potential anticancer agents. They were tested against human multiple myeloma (RPMI 8226), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), and mouse skin melanoma (B16-F10) cell lines. Toxicity was tested on human normal skin fibroblasts (HSF) and normal colon fibroblasts (CCD-18Co). The growth inhibition mechanism of the most active derivative was analyzed through investigation of its effect on the distribution of cell cycle phases and ability to induce apoptosis and necrosis in RPMI 8226 and A549 cancer cells. The tyrosinase inhibitory potential was assessed, followed by molecular docking studies. Compounds 3a–3h show high anticancer activity against MDA-MB-231 and B16-F10 cell lines with IC50 values of 1.51–3.03 µM. Moreover, the cytotoxic activity of the investigated compounds against HSF and CCD-18Co cells was 8–70 times lower than against the cancer cells or no toxicity was shown in our tests, with derivative 3a being particularly successful. The mechanism of action of compound 3a in RPMI 8226 cell was shown to be through induction of cell death through apoptosis. The derivatives show ability to inhibit the tyrosinase activity with a mixed mechanism of inhibition. The final molecular docking results showed for IC50 distinct correlation with experiment.  相似文献   

10.
Shrimp is one of the most popular seafood items worldwide, and has been reported as a source of chemopreventive compounds. In this study, shrimp lipids were separated by solvent partition and further fractionated by semi-preparative RP-HPLC and finally by open column chromatography in order to obtain isolated antiproliferative compounds. Antiproliferative activity was assessed by inhibition of M12.C3.F6 murine cell growth using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. The methanolic fraction showed the highest antiproliferative activity; this fraction was separated into 15 different sub-fractions (M1–M15). Fractions M8, M9, M10, M12, and M13 were antiproliferative at 100 µg/mL and they were further tested at lower concentrations. Fractions M12 and M13 exerted the highest growth inhibition with an IC50 of 19.5 ± 8.6 and 34.9 ± 7.3 µg/mL, respectively. Fraction M12 was further fractionated in three sub-fractions M12a, M12b, and M12c. Fraction M12a was identified as di-ethyl-hexyl-phthalate, fraction M12b as a triglyceride substituted by at least two fatty acids (predominantly oleic acid accompanied with eicosapentaenoic acid) and fraction M12c as another triglyceride substituted with eicosapentaenoic acid and saturated fatty acids. Bioactive triglyceride contained in M12c exerted the highest antiproliferative activity with an IC50 of 11.33 ± 5.6 µg/mL. Biological activity in shrimp had been previously attributed to astaxanthin; this study demonstrated that polyunsaturated fatty acids are the main compounds responsible for antiproliferative activity.  相似文献   

11.
Quorum sensing is a communication system among bacteria to sense the proper time to express their virulence factors. Quorum sensing inhibition is a therapeutic strategy to block bacterial mechanisms of virulence. The aim of this study was to synthesize and evaluate new bioisosteres of N-acyl homoserine lactones as Quorum sensing inhibitors in Chromobacterium violaceum CV026 by quantifying the specific production of violacein. Five series of compounds with different heterocyclic scaffolds were synthesized in good yields: thiazoles, 16a–c, thiazolines 17a–c, benzimidazoles 18a–c, pyridines 19a–c and imidazolines 32a–c. All 15 compounds showed activity as Quorum sensing inhibitors except 16a. Compounds 16b, 17a–c, 18a, 18c, 19c and 32b exhibited activity at concentrations of 10 µM and 100 µM, highlighting the activity of benzimidazole 18a (IC50 = 36.67 µM) and 32b (IC50 = 85.03 µM). Pyridine 19c displayed the best quorum sensing inhibition activity (IC50 = 9.66 µM). Molecular docking simulations were conducted for all test compounds on the Chromobacterium violaceum CviR protein to gain insight into the process of quorum sensing inhibition. The in-silico data reveal that all 15 the compounds have higher affinity for the protein than the native AHL ligand (1). A strong correlation was found between the theoretical and experimental results.  相似文献   

12.
Twenty lupane type A-ring azepano-triterpenoids were synthesized from betulin and its related derivatives and their antitubercular activity against Mycobacterium tuberculosis, mono-resistant MTB strains, and nontuberculous strains Mycobacterium abscessus and Mycobacterium avium were investigated in the framework of AToMIc (Anti-mycobacterial Target or Mechanism Identification Contract) realized by the Division of Microbiology and Infectious Diseases, NIAID, National Institute of Health. Of all the tested triterpenoids, 17 compounds showed antitubercular activity and 6 compounds were highly active on the H37Rv wild strain (with MIC 0.5 µM for compound 7), out of which 4 derivatives also emerged as highly active compounds on the three mono-resistant MTB strains. Molecular docking corroborated with a machine learning drug-drug similarity algorithm revealed that azepano-triterpenoids have a rifampicin-like antitubercular activity, with compound 7 scoring the highest as a potential M. tuberculosis RNAP potential inhibitor. FIC testing demonstrated an additive effect of compound 7 when combined with rifampin, isoniazid and ethambutol. Most compounds were highly active against M. avium with compound 14 recording the same MIC value as the control rifampicin (0.0625 µM). The antitubercular ex vivo effectiveness of the tested compounds on THP-1 infected macrophages is correlated with their increased cell permeability. The tested triterpenoids also exhibit low cytotoxicity and do not induce antibacterial resistance in MTB strains.  相似文献   

13.
A series of novel C4-C7-tethered biscoumarin derivatives (12a–e) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin 12d was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC50 = 6.30 µM) and butyrylcholinesterase (BChE, IC50 = 49 µM). Detailed molecular modelling studies compared the accommodation of ensaculin (well-established coumarin derivative tested in phase I of clinical trials) and 12d in the human recombinant AChE (hAChE) active site. The ability of novel compounds to cross the blood–brain barrier (BBB) was predicted with a positive outcome for compound 12e. The antiproliferative effects of newly synthesized biscoumarin derivatives were tested in vitro on human lung carcinoma cell line (A549) and normal colon fibroblast cell line (CCD-18Co). The effect of derivatives on cell proliferation was evaluated by MTT assay, quantification of cell numbers and viability, colony-forming assay, analysis of cell cycle distribution and mitotic activity. Intracellular localization of used derivatives in A549 cells was confirmed by confocal microscopy. Derivatives 12d and 12e showed significant antiproliferative activity in A549 cancer cells without a significant effect on normal CCD-18Co cells. The inhibition of hAChE/human recombinant BChE (hBChE), the antiproliferative activity on cancer cells, and the ability to cross the BBB suggest the high potential of biscoumarin derivatives. Beside the treatment of cancer, 12e might be applicable against disorders such as schizophrenia, and 12d could serve future development as therapeutic agents in the prevention and/or treatment of Alzheimer’s disease.  相似文献   

14.
A new series of 1,4-bis(1-(5-(aryldiazenyl)thiazol-2-yl)-5-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-3-yl)benzenes 3a–i were synthesized via reaction of 5,5′-(1,4-phenylene)bis(3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazole-1-carbothioamide) (1) with hydrazonoyl halides 2a–i. In addition, reaction of 1 with ethyl chloroacetate afforded bis-thiazolone derivative 8 as the end product. Reaction of compound 8 with methyl glyoxalate gave bis-thiazolone derivative 10. The structures of the newly synthesized compounds were established on the basis of spectroscopic evidences and their alternative syntheses. All the synthesized compounds were evaluated for their anti-tumor activities against hepatocellular carcinoma (HepG2) cell lines, and the results revealed promising activities of compounds 3g, 5e, 3e, 10, 5f, 3i, and 3f with IC50 equal 1.37 ± 0.15, 1.41 ± 0.17, 1.62 ± 0.20, 1.86 ± 0.20, 1.93 ± 0.08, 2.03 ± 0.25, and 2.09 ± 0.19 μM, respectively.  相似文献   

15.
Nonsteroidal anti-inflammatory drugs (NSAIDs) belong to a class of universally and commonly used anti-inflammatory analgesics worldwide. A diversity of drawbacks of NSAIDs have been reported including cellular oxidative stress, which in turn triggers the accumulation of unfolded proteins, enhancing endoplasmic reticulum stress, and finally resulting in renal cell damage. Cordyceps cicadae (CC) has been used as a traditional medicine for improving renal function via its anti-inflammatory effects. N6-(2-hydroxyethyl)adenosine (HEA), a physiologically active compound, has been reported from CC mycelia (CCM) with anti-inflammatory effects. We hypothesize that HEA could protect human proximal tubular cells (HK–2) from NSAID-mediated effects on differential gene expression at the mRNA and protein levels. To verify this, we first isolated HEA from CCM using Sephadex® LH–20 column chromatography. The MTT assay revealed HEA to be nontoxic up to 100 µM toward HK–2 cells. The HK–2 cells were pretreated with HEA (10–20 µM) and then insulted with the NSAIDs diclofenac (DCF, 200 µM) and meloxicam (MXC, 400 µM) for 24 h. HEA (20 µM) effectively prevented ER stress by attenuating ROS production (p < 0.001) and gene expression of ATF–6, PERK, IRE1α, CDCFHOP, IL1β, and NFκB within 24 h. Moreover, HEA reversed the increase of GRP78 and CHOP protein expression levels induced by DCF and MXC, and restored the ER homeostasis. These results demonstrated that HEA treatments effectively protect against DCF- and MXC-induced ER stress damage in human proximal tubular cells through regulation of the GRP78/ATF6/PERK/IRE1α/CHOP pathway.  相似文献   

16.
17.
The ability of NQO2 to increase the production of free radicals under enhanced generation of quinone derivatives of catecholamines is considered to be a component of neurodegenerative disease pathogenesis. The present study aimed to investigate the neuroprotective mechanisms of original NQO2 inhibitor M-11 (2-[2-(3-oxomorpholin-4-il)-ethylthio]-5-ethoxybenzimidazole hydrochloride) in a cellular damage model using NQO2 endogenous substrate adrenochrome (125 µM) and co-substrate BNAH (100 µM). The effects of M-11 (10–100 µM) on the reactive oxygen species (ROS) generation, apoptosis and lesion of nuclear DNA were evaluated using flow cytometry and single-cell gel electrophoresis assay (comet assay). Results were compared with S29434, the reference inhibitor of NQO2. It was found that treatment of HT-22 cells with M-11 results in a decline of ROS production triggered by incubation of cells with NQO2 substrate and co-substrate. Pre-incubation of HT-22 cells with compounds M-11 or S29434 results in a decrease of DNA damage and late apoptotic cell percentage reduction. The obtained results provide a rationale for further development of the M-11 compound as a potential neuroprotective agent.  相似文献   

18.
Plant lectins have been investigated to elucidate their complicated mechanisms due to their remarkable anticancer activities. Although plant lectins seems promising as a potential anticancer agent for further preclinical and clinical uses, further research is still urgently needed and should include more focus on molecular mechanisms. Herein, a Naïve Bayesian model was developed to predict the protein-protein interaction (PPI), and thus construct the global human PPI network. Moreover, multiple sources of biological data, such as smallest shared biological process (SSBP), domain-domain interaction (DDI), gene co-expression profiles and cross-species interolog mapping were integrated to build the core apoptotic PPI network. In addition, we further modified it into a plant lectin-induced apoptotic cell death context. Then, we identified 22 apoptotic hub proteins in mesothelioma cells according to their different microarray expressions. Subsequently, we used combinational methods to predict microRNAs (miRNAs) which could negatively regulate the abovementioned hub proteins. Together, we demonstrated the ability of our Naïve Bayesian model-based network for identifying novel plant lectin-treated cancer cell apoptotic pathways. These findings may provide new clues concerning plant lectins as potential apoptotic inducers for cancer drug discovery.  相似文献   

19.
Most anticancer drugs target mitosis as the most crucial and fragile period of rapidly dividing cancer cells. However the limitations of classical chemotherapeutics drive the search for new more effective and selective compounds. For this purpose structural modifications of the previously characterized pyridine analogue (S1) were incorporated aiming to obtain an antimitotic inhibitor of satisfactory and specific anticancer activity. Structure-activity relationship analysis of the compounds against a panel of cancer cell lines allowed to select a compound with a thiophene ring at C5 of a 3,4-dihydropyridine-2(1H)-thione (S22) with promising antiproliferative activity (IC50 equal 1.71 ± 0.58 µM) and selectivity (SI = 21.09) against melanoma A375 cells. Moreover, all three of the most active compounds from the antiproliferative study, namely S1, S19 and S22 showed better selectivity against A375 cells than reference drug, suggesting their possible lower toxicity and wider therapeutic index. As further study revealed, selected compounds inhibited tubulin polymerization via colchicine binding site in dose dependent manner, leading to aberrant mitotic spindle formation, cell cycle arrest and apoptosis. Summarizing, the current study showed that among obtained mitotic-specific inhibitors analogue with thiophene ring showed the highest antiproliferative activity and selectivity against cancer cells.  相似文献   

20.
A series of diclofenac N-derivatives (2, 4, 6, 8c, 9c, 10a-c) were synthesized in order to test their anti-cancer and anti-inflammatory effects. The anticarcinogen activity has been assayed against three cancer cell lines: HT29, human colon cancer cells; Hep-G2, human hepatic cells; and B16-F10, murine melanoma cells. First, we determined the cytotoxicity of the different compounds, finding that the most effective compound was compound 8c against all cell lines and both compounds 4 and 6 in human Hep-G2 and HT29 cell lines. Compounds 4 and 8c were selected for the percentage of apoptosis determination, cell cycle distribution, and mitochondrial membrane potential measure because these products presented the lowest IC50 values in two of the three cancer cell lines assayed (B16-F10 and HepG2), and were two of the three products with lowest IC50 in HT29 cell line. Moreover, the percentages of apoptosis induction were determined for compounds 4 and 8c, showing that the highest values were between 30 to 60%. Next, the effects of these two compounds were observed on the cellular cycle, resulting in an increase in the cell population in G2/M cell cycle phase after treatment with product 8c, whereas compound 4 increased the cells in phase G0/G1, by possible differentiation process induction. Finally, to determine the possible apoptosis mechanism triggered by these compounds, mitochondrial potential was evaluated, indicating the possible activation of extrinsic apoptotic mechanism. On the other hand, we studied the anti-inflammatory effects of these diclofenac (DCF) derivatives on lipopolysaccharide (LPS) activated RAW 264.7 macrophages-monocytes murine cells by inhibition of nitric oxide (NO) production. As a first step, we determined the cytotoxicity of the synthesized compounds, as well as DCF, against these cells. Then, sub-cytotoxic concentrations were used to determine NO release at different incubation times. The greatest anti-inflammatory effect was observed for products 2, 4, 8c, 10a, 10b, and 9c at 20 µg·mL−1 concentration after 48 h of treatment, with inhibition of produced NO between 60 to 75%, and a concentration that reduces to the 50% the production of NO (IC50 NO) between 2.5 to 25 times lower than that of DCF. In this work, we synthesized and determined for the first time the anti-cancer and anti-inflammatory potential of eight diclofenac N-derivatives. In agreement with the recent evidences suggesting that inflammation may contribute to all states of tumorigenesis, the development of these new derivatives capable of inducing apoptosis and anti-inflammatory effects at very low concentrations represent new effective therapeutic strategies against these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号