首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Operating temperature is one of the most important controlling parameters in oil sands processing. Considering the massive energy consumption and green house gas emission, lowering the processing temperature is highly desirable. To achieve such an ambitious goal requires a comprehensive understanding on the role of temperature in oil sands processing. This paper provides an overview of major findings from existing studies related to oil sands processing temperature. The relation between temperature and bitumen recovery is discussed. The effect of temperature on the physiochemical properties of oil sand components, such as bitumen viscosity, bitumen surface tension and surface potentials of bitumen and solids, is analyzed. The interactions between bitumen and solids and between bitumen and gas bubbles as a function of temperature are recounted. Also discussed is the role of chemical additives in oil sand processing. It has been found that temperature affects nearly all properties of oil sands among which bitumen viscosity and bitumen‐solids adhesion impose a prominent impact on bitumen recovery. The use of selected chemical additives can reduce bitumen viscosity and/or the bitumen‐solids adhesion, and thus provide a possible way to process oil sands at a low temperature while maintaining a high bitumen recovery.  相似文献   

2.
The oil removal efficiency for the ex situ extraction of bitumen from oil sands, or ex situ washing of oil‐contaminated sand and related processes is determined by the balance of forces at the oil/water and solid/fluid interfaces. The objective of this work is to estimate the balance of forces at the interface using dimensionless numbers, and their use in evaluating and engineering ex situ soil washing processes. To this end, bitumen was removed from bitumen‐coated sand particles using a two‐step process. In the first step, the particles were mixed with a suitable solvent (toluene) used, primarily, to reduce the viscosity of bitumen. The particles were then mixed with water or an aqueous surfactant solution capable of producing low interfacial tensions with the solvent‐bitumen mixture. The fraction of oil retained after washing was evaluated as a function of interfacial tension, solvent/bitumen ratio, mixing time, mixing velocity, and particle size. These ex situ washing conditions were normalized using dimensionless film and particle‐based Weber and Capillary numbers. The fraction of oil retained by the particles was plotted against these dimensionless numbers to generate capillary curves similar to those used in enhanced oil recovery. These curves reveal the existence of a critical film‐based Weber number and a particle‐based Capillary number that can be used in the design or evaluation of soil washing processes. The film‐based Weber number also explained literature data that associates interfacial tension with the removal of oil from oil‐based drill cuttings, as well as field observations on the role that particle size plays on the removal of oil in soil washing operations.  相似文献   

3.
The current state of knowledge on the fundamentals of bitumen recovery from Athabasca oil sands using water‐based extraction methods is reviewed. Instead of investigating bitumen extraction as a black box, the bitumen extraction process has been discussed and analyzed as individual steps: Oil sand lump size reduction, bitumen liberation, aeration, flotation and interactions among the different components that make up an oil sand slurry. With the development and adoption of advanced analytical instrumentations, our understanding of bitumen extraction at each individual step has been extended from the macroscopic scale down to the molecular level. How to improve bitumen recovery and bitumen froth quality from poor processing ores is still a future challenge in oil sands processing.  相似文献   

4.
When using the water‐based extraction processes (WBEPs) to recover bitumen from the weathered oil sands, very low bitumen recovery arisen from the poor liberation of bitumen from sand grains is always obtained. Application of microbial enhanced oil recovery (MEOR) technology in WBEPs to solve the poor processability of the weathered ore was proposed. It was found that processability of the microbial‐treated weathered ore was greatly improved. The improved processability was attributed to the biosurfactants production in the culture solution, alteration of the solids wettability, degradation of the asphaltene component, and the decrease of the bitumen viscosity, which collectively contributed to the bitumen liberation from the surface of sand grains. Although it still has many issues to be solved for an industrial application of the MEOR technology in oil sands separation, it is believed that the findings in this work promote the solution to the poor processability of the weathered ore. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2985–2993, 2014  相似文献   

5.
Non‐aqueous extraction of bitumen from oil sands has the potential to reduce fresh water demand of the extraction process and eliminate tailings ponds. In this study, different light hydrocarbon solvents, including aromatics, cycloalkanes, biologically derived solvents and mixtures of solvents were compared for extraction of bitumen from Alberta oil sands at room temperature and ambient pressure. The solvents are compared based on bitumen recovery, the amount of residual solvent in the extracted oil sands tailings and the content of fine solids in the extracted bitumen. The extraction experiments were carried out in a multistage process with agitation in rotary mixers and vibration sieving. The oil sands tailings were dried under ambient conditions, and their residual solvent contents were measured by a purge and trap system followed by gas chromatography. The elemental compositions of the extraction tailings were measured to calculate bitumen recovery. Supernatants from the extraction tests were centrifuged to separate and measure the contents of fine solid particles. Except for limonene and isoprene, the tested solvents showed good bitumen recoveries of around 95%. The solvent drying rates and residual solvent contents in the extracted oil sands tailings correlated to solvent vapour pressure. The contents of fine solids in the extracted bitumen (supernatant) were below 2.9% for all solvents except n‐heptane‐rich ones. Based on these findings, cyclohexane is the best candidate solvent for bitumen extraction, with 94.4% bitumen recovery, 5 mg of residual solvent per kilogram of extraction tailings and 1.4 wt% fine solids in the recovered bitumen. © 2012 Canadian Society for Chemical Engineering  相似文献   

6.
The role of surface hydrophobicity in water‐based oil sand extraction is examined from the perspective of mineral flotation separation. Although anionic carboxylates (sulphonates) released from bitumen are helpful for charging bitumen and liberating bitumen from sand grains, their presence in oil sand slurries tends to make bitumen and bubbles less hydrophobic. In addition, solid hydrophobization under oil sand extraction conditions can occur through different mechanisms of carboxylate adsorption. It is the hydrophobized fine solids that present challenges for achieving a high bitumen recovery with a good froth quality, due to their competition with bitumen for attachment to bubbles. While chemisorption of carboxylates contributes to hydrophobization of heavy minerals present in oil sands, carboxylate adsorption activated by hydrolyzed metal cations alters silica and clays from hydrophilic to hydrophobic. Different adsorption mechanisms of calcium on silica, clays, and other minerals are analyzed to explain why fine solids of varying mineralogy in combination with calcium affect bitumen extraction differently. Metal ions that activate solid hydrophobization under oil sand extraction conditions are identified from dynamic attachment of solids from mature fine tailings (MFT) to bitumen. To mitigate the effect of fines on oil sand extraction, selective flocculation of fine solids is recognized as especially feasible for bitumen flotation recovery from oil sand middling streams. Future research in reducing or eliminating caustic addition, understanding the role of inorganic anions, and searching for feasible techniques for treating MFT based on different mineralogy and surface properties, are briefly discussed.
  相似文献   

7.
Qi Dai  Keng H. Chung 《Fuel》1995,74(12):1858-1864
Bitumen—sand interaction was studied as a function of pH, particle size, temperature and solvent addition to bitumen. Sand particles can be easily detached from the bitumen surface at pH> 6. At pH < 6, strong attachment between bitumen and sand is observed. The bitumen—sand interaction is also particle-size dependent: the finer the particles, the stronger the attachment. The detachment of coarse particles from bitumen can be achieved by increasing the alkalinity of the solution, but not for fine particles, indicating that the particle size is one of the critical factors affecting liberation of bitumen from sand. Increasing temperature has two effects: it is not only reduces the viscosity to facilitate bitumen liberation, but also increases the electrostatic repulsion between sand and bitumen. This is confirmed by the DLVO theory and is in agreement with the batch extraction results on real oil sands.  相似文献   

8.
Solids isolated from weathered oil sands ores and those having low‐ and high‐fine solids content were studied. The organic matter (OM) adsorbed on the solids was found insoluble in most common solvents, contributing significantly to the change of solid surface properties. The surface properties of these solids were found to affect the entire process cycle of obtaining synthetic crude oil from surface‐mined oil sands using a water‐based extraction process, and managing the existing tailings ponds. In this study, the low‐fine solids ore possessed the lowest amount of organic‐coated solids and highest bitumen recovery. Siderite and pyrite, which tend to concentrate in the hydrocarbon phase were observed in the isolated solids from the weathered and high‐fine ores but were absent in the low‐fine ores. In all the ores studied, the solids from the bitumen froth possess less quartz, and more carbonates compared with solids from the tailings. Elemental analysis by energy dispersive X‐ray spectroscopy (EDX) and elemental analyser revealed the presence of more transition metals (iron and titanium), and carbon in the solids obtained from the bitumen froth when compared with those from the tailings. Infrared (IR) spectroscopy study substantiated the results obtained by X‐ray diffraction and elemental analysis. IR spectra showed a likely association between OM and carbonates in the organic‐coated solids isolated from bitumen froth. More organic‐coated solids were found in weathered oil sands than in other types of ores and observed to reduce bitumen recovery from oil sands.  相似文献   

9.
The chemical composition of the aqueous phase in oil sand slurries influences bitumen recovery from oil sands, especially those containing greater than 10% fines. The composition is controlled by a combination of mixing and dilution, ion exchange with clay surfaces and precipitation of divalent ions as carbonate minerals. Elevated levels of soluble potassium in the oil sand, which appear to be a marker for degraded illite or smectitic clays, are associated with depressed bitumen recovery. These clays have a swelling character and can contribute divalent ions to the slurry by ion exchange between the clay mineral surfaces and the process water.  相似文献   

10.
Deborah Henry  Bryan Fuhr 《Fuel》1992,71(12):1515-1518
Ultracentrifugation was investigated as a means to obtain solvent-free bitumen from oil sand. The bitumen from three oil sands of varying grades was separated by placing the sands in specially designed tubes and centrifuging for 2 h at 198 000 at 20 °C. For all grades of oil sand, approximately 70% of the bitumen was recovered. The recovered bitumen was compared to the residual remaining on the sand, and to that extracted by the conventional Soxhlet technique. The ultracentrifuged bitumen contained some emulsified water and a small amount of fine solids. The solvent-extracted material was water-free, but contained a small amount of residual solvent and fine solids. The ultracentrifuge caused some fractionation of the bitumen, resulting in a product slightly enriched in asphaltene components compared to the solvent-extracted material. The residual bitumen remaining on the sand was correspondingly slightly depleted in asphaltenes. However, as evidenced by gas Chromatographic simulated distillation data, ultracentrifugation did retain the light (180–220 °C) components of the bitumen which were lost during the solvent removal step following solvent extraction. Other analyses such as density, viscosity and elemental composition verified that ultracentrifugation resulted in some fractionation of bitumen components.  相似文献   

11.
油砂作为一种非常规石油资源,越来越受到人们的重视。油砂沥青的含量和性质对其开发有着重要的影响。有机溶剂抽提可以测定油砂沥青的含量。本文研究了3种溶剂对新疆油砂的抽提能力,并对不同溶剂抽提得到的新疆油砂沥青进行了性质分析。结果表明,新疆油砂含油率(甲苯测)为11.75%,属于中品位油砂矿;甲苯、氯仿和石油醚3种不同溶剂对新疆油砂沥青进行抽提,发现3种溶剂抽提能力的大小关系为氯仿>甲苯>石油醚;抽提过程中,氯仿表现出对胶质和沥青质较强的萃取能力,而石油醚对沥青质的萃取能力几乎为0,采用氯仿可以更准确地测定油砂沥青的含量。氯仿抽提得到新疆油砂沥青及其组分的杂原子含量和分子量高于甲苯和石油醚抽提的。由红外谱图发现,氯仿抽提得到的油砂沥青的含氧、含硫官能团的吸收峰强度大于甲苯和石油醚抽提的,表明氯仿对油砂沥青中极性物质的抽提能力更强。  相似文献   

12.
介绍了加拿大油砂资源情况、主要性质、改质技术现状和原油外输能力,重点调研了有工业应用潜力的部分改质技术,包括工艺技术现状、核心流程、技术特点和存在问题等。从部分改质产品性质、改质深度、改质过程的碳排放强度、是否存在副产品等多种维度,分析油砂沥青部分改质技术的未来发展趋势。其中对油砂沥青进行缓和热裂解,或缓和热裂解结合沥青质脱除技术是油砂沥青部分改质的技术核心;目标是在满足加拿大管道要求的前提下,尽可能减少稀释剂用量、保证部分改质产品的稳定性,降低改质工艺过程的碳排放强度。  相似文献   

13.
The development of a continuous process for the separation of solvent-diluted bitumen from mineral particles is an important step for the development of solvent-based extraction technology of bitumen from mined oil sands. In this work, a custom-made conical filtering centrifuge is used to separate toluene-diluted bitumen from oil sand mineral particles. Compositions of wet granular samples are analyzed before and after centrifugation for three different oil sand ores. Results suggest that conical filtering centrifuges could be used for continuous separation of solvent-diluted bitumen from oil sand ores with relatively coarse particles.  相似文献   

14.
作为人类最宝贵的资源,石油在世界各国国民经济的发展中一直起着很重要的作用。但是,与天然气、煤炭等相比,石油的可开采时间最短。因此,加拿大油砂等非常规石油资源作为石油有效的补充逐渐受到人们的关注。但是,与中东原油等常规原油相比,加拿大油砂是使用性能极差的原油,从加拿大油砂提取的油砂沥青流动性非常差,很难通过管道输送的方法运输到炼油厂,因此其利用受到很大的限制。针对这一情况,研究人员利用超临界水进行了降低超重质油粘度,改善其流动性的研究工作,取得了很好的结果,可为利用加拿大油砂等非常规石油资源、保障未来能源安全起积极的作用。  相似文献   

15.
Extraction from oil sands is a crucial step in the industrial recovery of bitumen. It is challenging to obtain online measurements of process outputs such as bitumen grade and recovery. Online measurements are a prerequisite for innovating better process control solutions for process efficiency and cost reduction. We have developed a soft sensor to provide online measurements of bitumen grade and recovery in a flotation‐based oil sand extraction process. Continuous froth images were captured using a VisioFroth camera system on a batch flotation unit. A support vector regression (SVR) model with a Gaussian kernel was constructed to develop a soft sensor for bitumen grade and recovery using froth image features as the inputs. The model was trained and validated for batch flotation of different grades of oil sands ore at industry‐relevant process conditions. A Dean‐Stark analyzer was used to obtain offline grade and recovery measurements that were used to calibrate the soft sensor. Mean squared errors (MSE) of 62 and 74 were achieved for grade (%) and recovery (%), respectively, and this was obtained using 5‐fold cross validation. The developed soft sensor model has been applied successfully in the real‐time dynamic monitoring of flotation grade and recovery for different grades of ore and operating conditions.
  相似文献   

16.
A refined structural model for in situ oil sands is proposed in terms of the mutual arrangement of sand grains, fines, water and bitumen. In the Athabasca deposit, the sand grains consist mainly of quartz and their packing is such that the porosity is about 35%. In rich oil sand, 10–15% of the pore space is occupied by connate water whereas the remainder is occupied by bitumen. For lower grade oil sands, a direct correlation exists between the water content and the amount of fines (particles smaller than 44 μm) and an inverse correlation exists between the bitumen content and the amount of fines. These relationships are successfully explained in terms of the irreducible water saturation in a porous medium and the double layer interaction between sand and bitumen surfaces.  相似文献   

17.
张坚强  李鑫钢  隋红 《化工进展》2014,33(8):1986-1991
传统水洗法和溶剂萃取法萃取油砂沥青时,存在沥青中含有沙土和残沙中含有油等缺点。为解决上述缺点,本文采用不同比例的乙酸甲酯/正庚烷复合溶剂萃取油砂沥青,研究了离子液体(1-丁基-3-甲基咪唑四氟硼酸盐,[Emim]BF4)对该溶剂萃取体系的萃取率和分离洁净程度的影响。采用红外光谱仪和扫描电镜对萃取后的残沙和沥青的洁净程度进行了定性分析,并结合元素分析仪和电感耦合等离子体发射光谱仪获得萃取后残沙和沥青的洁净程度的定量结果。实验结果表明:当复合溶剂体积比为2∶3时,[Emim]BF4促使沥青回收率达到最大值94.20%,比单纯复合溶剂萃取体系的最大萃取率高7.92%;通过上述测试方法的定性和定量分析,证明了[Emim]BF4能有效解决沥青夹带沙土和残沙中含油的问题。  相似文献   

18.
The hot water process for Utah tar sands differs significantly from that used for Canadian tar sands due to the inherent differences in the respective bitumen viscosities and the nature of sand-bitumen association. Specifically, the high viscosity of Utah bitumen and the direct bonding to sand particles necessitates phase disengagement by hot water digestion in a high shear force field under appropriate conditions of pulp density and solution alkalinity. Interestingly, phase separation is accompanied by a modified froth flotation technique inasmuch as the dispersed bitumen droplets which are collected in the froth phase are not hydrophobic but, nevertheless, entrap air bubbles and are recovered in the bitumen concentrate.  相似文献   

19.
Air‐kerosene bubbles were used in a novel laboratory scale pipeline loop to assess the extraction performance of poor processing oil sand ores. The addition of kerosene to air, whereby producing oily bubbles, substantially enhanced bitumen recovery from poor processing oil sand ores. The oily bubbles were added in a pipeline loop during bitumen liberation from the sand grains. The bitumen recovery from poor processing ores with the addition of the oily bubbles to the conditioning slurry becomes comparable to that of good processing ores. The present findings can be of substantial benefit to the oil sands industry.  相似文献   

20.
Partial upgrading is an emerging direction in the processing of Canadian oil sands bitumen in response to the economic and environmental challenges in the oil sands industry. Partial upgrading aims to improve bitumen quality only to the level at which pipeline specifications are met without use of diluent. Given that partial upgrading technologies have not yet reached commercial deployment, there is a lack of technical data to assess the expected benefits in terms of energy input and greenhouse gas emissions reduction. In this study, we present an assessment of a partial upgrading scheme using detailed process simulation. We developed a conceptual process scheme considering visbreaking, solvent deasphalting, and naphtha hydrotreating as the core partial upgrading processes. Reactor models were assembled using experimental data from CanmetENERGY's pilot plant facilities and from the literature and integrated into a plant‐wide simulation model. Simulations allowed the examination of trends in partial upgrader product yields and quality and enabled a comparison with traditional bitumen upgrading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号