首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Ceramics International》2021,47(18):25387-25397
Lithium-sulfur (Li–S) batteries hold great expectations as next-generation advanced capacity storage devices due to their higher theoretical energy density and low cost. Even so, polysulfide shuttles, insulation, and volume expansion of sulfur impede its commercial progress. To suppress these problems, we used electrospinning and self-templating to construct C/Co9S8 hybrid polyhedra-modified carbon nanofibers (denoted as C/Co9S8–C@S fibers) as sulfur hosts. The quasi-metallic polar Co9S8 strongly bonds and locks polysulfides, and the hollow polyhedra provide sulfur storage space. Moreover, the overall nanofiber forms an interconnected conductive network to assist the transmission of Li+/e and restrain the escape of the sulfur phase to a certain extent. Compared with C/Co9S8 polyhedra and carbon nanofibers, the C/Co9S8–C@S fiber delivers excellent adsorption characteristics for polysulfides. As a Li–S battery cathode, the C/Co9S8–C@S fiber (sulfur content: 87.20 wt%) exhibits an initial specific capacity of 1013.7 mAh g−1 at 0.1 C, displaying a stable capacity of 694.9 mAh g−1 after 150 cycles. Additionally, it shows a high specific capacity of 894.7 mAh g−1 at 1C with a capacity decay of ~0.116% per cycle over 500 cycles.  相似文献   

2.
《Ceramics International》2023,49(8):11788-11795
In lithium-ion batteries (LIB), cobalt oxide is considered an ideal anode material because of its theoretical specific capacity of up to 890 mAh g−1, abundant resources, and low price. However, the volume expansion during the charging and discharging process and its lower conductivity have hindered its development. In this work, a metal-organic framework (MOF) was used as an initial template, encapsulated in graphene aerogels (GA) by hydrothermal and programmed temperature-controlled annealing and eventually formed into Co3O4 microcubes@GA composite. GA acts as a three-dimensional conductive network and mechanical skeleton, providing high electrical conductivity and structural stability to the composites. Moreover, the precursor's high porosity and stable structure are retained after annealing treatment. As an anode, the best long cycle life of Co3O4 microcubes@GA was achieved when the graphene oxide (GO) concentration was 3.0 mg ml−1, reaching 1234.9 mAh g−1 after 200 cycles at 1 A g−1 with a coulomb efficiency (CE) of 98.97%.  相似文献   

3.
《Ceramics International》2021,47(19):27012-27021
The development of lithium-sulfur batteries (LSB) was hindered due to the shuttling of Li-polysulfides in electrolytes and sluggish electrochemical kinetics of polysulfides. To address these stumbling blocks, we introduced La2O3 nanorods modification of ketjen black@sulfur (La2O3/KB@S) composite that adsorbs and provides sufficient sites with Li-polysufides interaction. The La2O3 nanorods play a key role in the adsorption and catalysis performance of the polysulfides, which further accelerate the redox kinetics. Consequently, the La2O3/KB@S cathode with sulfur loading of 3.1 mg cm−2 attained a high initial discharge capacity of 833 mAh g−1 at a 0.5C rate and displayed excellent cyclic stability with reversible capacity of 380 mAh g−1 after 500 cycles with an average of 98% coulombic efficiency. Further, even with high sulfur loading of 5 mg cm−2, the La2O3/KB@S cathode also presents a capacity of 4.9 mAh at 0.3C and still maintains a stable value of 3.87 mAh after 150 cycles. The results suggest the multifunction La2O3 nanorods anchoring effectively and catalyzing are beneficial to realize the goal of the large-scale application with high load active materials and high-performance LSB.  相似文献   

4.
《Ceramics International》2022,48(11):15252-15260
The Co3O4, as a potential anode of lithium-ion batteries, has gained considerable attention because of high theoretical capacity. However, the Co3O4 is suffering from serious structure deterioration and rapid capacity fading due to its bulky volume change during cyclic charge/discharge process. Herein, to stabilize the lithium storage performance of the Co3O4 nanoparticles, a characteristic carbon scaffold (HPC) integrating hollow and porous structures has been fabricated by a well-designed method for the first time. The ultrafine Co3O4 nanoparticles are cleverly anchored on the HPC (HPC@Co3O4) and hence achieve significantly improved electrochemical properties including high capacity, improved reaction kinetics and outstanding cycle stability, showing high capacity of 1084.7 mAh g-1 after 200 cycles at 200 mA g-1 as well as 681.4 mAh g-1 after 300 cycles at 1000 mA g-1. The HPC@Co3O4 therefore shows good promising for application in advanced lithium-ion battery anodes. The results of the systematically material and electrochemical characterizations indicate that the synergistic effects of ultrafine Co3O4 nanoparticles and well-designed HPC scaffolds are responsible for the outstand performance of the HPC@Co3O4 anode. Moreover, this work can enrich the understanding and development of stable and high-performance metal oxide-based lithium-ion battery anodes for advanced lithium storage.  相似文献   

5.
《Ceramics International》2021,47(19):26732-26737
Herein, we propose a new anode material, PbNb2O6, for use in lithium-ion batteries. PbNb2O6 can be synthesized via a simple and traditional solid-state method. The as-prepared powder exhibits an average size distribution of about 0.5 μm. When tested in a lithium-ion cell, the PbNb2O6 electrode can exhibit a charge capacity of 245.2 mAh g−1 at 200 mA g−1, and after 80 cycles, the capacity can retain a charge capacity of 181.4 mAh g−1, showing 0.32% capacity fading per cycle. Furthermore, the capacity of the PbNb2O6 electrode is 223.1 mAh g−1, even when cycled at 1000 mA g−1, and a capacity of 150.7 mAh g−1 is maintained up to 500 cycles. In addition, the lithiation mechanism of PbNb2O6 is investigated via various techniques. Interestingly, PbNb2O6 exhibits high capacity without the contribution of two redox couples of niobium after the initial cycles. Finally, all Results suggest that PbNb2O6 has potential for use as an electrode in lithium-ion batteries.  相似文献   

6.
《Ceramics International》2023,49(18):29495-29504
Upgrading waste re-utilization has been regarded as an important concept to promote the sustainable development of social economy. Herein, waste catkins were used as carbon source and template to prepare graphitic carbon/Co3O4 composites through cobalt salt immersion, in-situ carbonization and calcination. The obtained Co3O4/C composites inherit the microtubular structure of catkins with ultra-thin tube wall and large tube cavity. Particularly, the sample (Co3O4/C-280) calcined at 280 °C in air shows a morphology of the hollow Co3O4 spheres (av. 50 nm) evenly embedded on the biocarbon tube. As an anode for lithium-ion battery, such unique structure is more conductive to alleviate volume expansion. As expected, Co3O4/C-280 electrode has excellent rate capability at 5 A g−1 and stable long-cycle performance (647.3 mA h g−1, 1800 cycles, 1 A g−1). The presence of pseudo-capacitance behavior plays an important role in improving the capacity of material. The good electrochemical properties of Co3O4/C-280 can be ascribed to the synergistic effect of hollow tubular structure and graphitic carbon. Therefore, the strategy of making waste profitable is in line with the theme of green and sustainable development, and provides a reference for improving lithium storage performance of Co3O4-based anode materials.  相似文献   

7.
《Ceramics International》2017,43(14):11058-11064
This paper introduces a unique porous yolk-shell structured Co3O4 microball, which is synthesized by spray pyrolysis from precursor solution with polyvinylpyrrolidone (PVP) additive. PVP acts as an organic template in the pyrolytic reaction facilitating the formation of yolk-shell structure. The electrochemical properties of porous yolk-shell Co3O4 microballs evaluated as anode materials for lithium ion batteries exhibit high initial columbic efficiency of 77.9% and high reversible capacity of 1025 mAh g−1 with capacity retention of 98.8% after 150 cycles at 1 A g−1. In contrast, the hollow microballs obtained without PVP addition show obvious capacity decay from 1033 to 748 mAh g−1 after 150 cycles with the capacity retention of 72.3%. In addition, the microballs with porous yolk-shell structure exhibit better rate performance. The superior electrochemical performance is mainly attributed to the unique porous yolk-shell structure which provides large voids to buffer volume expansion and enlarge the contact area with the electrolyte, shortening the diffusion path of the lithium ions.  相似文献   

8.
《Ceramics International》2016,42(9):11239-11247
In this study, Cu and Mo ions were doped in Ca3Co4O9−δ to improve the electrical conductivity and electrochemical behavior of Ca3Co4O9−δ ceramic and the performance of a solid oxide fuel cell (SOFC) single cell based on NiO-SDC/SDC/doped Ca3Co4O9−δ-SDC were examined. Cu substitution in the monoclinic Ca3Co4O9−δ ceramic effectively enhanced the densification, slightly increased the grain size, and triggered the formation of some Ca3Co2O6; however, no second phase was found in porous Mo-doped Ca3Co4O9−δ ceramics even when the sintering temperature reached 1050 °C. Substitution of Cu ions caused slight increase in the Co3+ and Co4+ contents and decrease in the Co2+ content; however, doping with Mo ions showed the opposite trend. Doping the Ca3Co4O9−δ ceramic with a small amount of Cu or Mo increased its electrical conductivity. The maximum electrical conductivity measured was 218.8 S cm−1 for the Ca3Co3.9Cu0.1O9−δ ceramic at 800 °C. The Ca3Co3.9Cu0.1O9−δ ceramic with a coefficient of thermal expansion coefficient of 12.1×10−6 K−1 was chosen as the cathode to build SOFC single cells consisting of a 20 μm SDC electrolyte layer. Without optimizing the microstructure of the cathode or hermetically sealing the cell against the gas, a power density of 0.367 Wcm−2 at 750 °C was achieved, demonstrating that Cu-doped Ca3Co4O9−δ can be used as a potential cathode material for IT-SOFCs.  相似文献   

9.
The synthesis and electrochemical performance of a composite of Co9S8 nanoparticles and amorphous carbon is studied as an anode material for sodium-ion batteries. The Co9S8–carbon composite powder was fabricated through a one-pot spray pyrolysis process using thiourea and polyvinylpyrrolidone as sulfur and carbon sources, respectively. The Co9S8 nanoparticles are entirely covered by an amorphous carbon layer. The initial discharge and charge capacities of the Co9S8–carbon composite powder were 689 and 475 mA h g−1, respectively, at a current density of 0.5 A g−1. The Co9S8–carbon composite powders exhibited a stable cyclability with a reversible capacity of 404 mA h g−1 for the 50th cycle and a superior rate capability compared with bare Co1−xS powder. The improvement of Na-storage performance could be attributed to the small size and entanglement of the Co9S8 nanoparticles within the carbon matrix.  相似文献   

10.
《Ceramics International》2020,46(14):22606-22618
This study aimed to prepare a composite coating material comprising a solid ionic conductor of lithium aluminum titanium phosphate (Li1.4Al0.4Ti1.6(PO4)3, LATP) and porous carbon through a sol-gel method. LiNi0.8Co0.1Mn0.1O2 (LNCM811) cathode material with dual-functional composite conductors (i.e., LATP@porous carbon), denoted as LATP-PC, was prepared. The dry-coating method, also called the “mechanical-fusion alloy route,” was used to modify Ni-rich LNCM811 cathode materials. X-ray diffraction (XRD), micro-Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed that the LATP ionic conductor generated herein was uniformly deposited on 3D porous carbon and served as a dual-functional composite coating on LNCM811. Furthermore, the capacity retention of LATP-PC@LNCM811 was approximately 85.57% and 80.86% after 100 cycles at −20 °C and 25 °C, respectively. By contrast, pristine LNCM811 had the capacity retention of 78% and 74.96% at −20 °C and 25 °C, respectively. Furthermore, the high-rate capability of the LATP-PC@LNCM811 material was markedly enhanced to 169.81 mAh g−1 at 10C relative to that of pristine LNCM811, which was approximately 137.67 mAh g−1. The electrochemical performance of LNCM811 was enhanced by the uniform dual-conductive composite coating. The results of the study indicate that the LATP-PC@LNCM811 composite material developed herein is a potentially promising material for future high-energy Li-ion batteries.  相似文献   

11.
Porous iron oxide (Fe2O3) nanorods anchored on nitrogen-doped graphene sheets (NGr) were synthesized by a one-step hydrothermal route. After a simple microwave treatment, the iron oxide and graphene composite (NGr-I-M) exhibits excellent electrochemical performances as an anode for lithium ion battery (LIB). A high reversible capacity of 1016 mAh g1 can be reached at 0.1 A g1. When NGr-I-M electrode was further coated by 2 ALD cycles of ultrathin Al2O3 film, the first cycle Coulombic efficiency (CE), rate performance and cycling stability of the coated electrode can be greatly improved. A stable capacity of 508 mAh g1 can be achieved at 2 A g1 for 200 cycles, and an impressive capacity of 249 mAh g1 at 20 A g1 can be maintained without capacity fading for 2000 cycles. The excellent electrochemical performance can be attributed to the synergy of porous iron oxide structures, nitrogen-doped graphene framework, and ultrathin Al2O3 film coating. These results highlight the importance of a rational design of electrode materials improving ionic and electron transports, and potential of using ALD ultrathin coatings to mitigate capacity fading for ultrafast and long-life battery electrodes.  相似文献   

12.
《Ceramics International》2020,46(10):15793-15800
We successfully synthesized a novel core-shell hybrid metal oxide via a simple one-step hydrothermal method without annealing. This composite of Co3O4 particles covered with SnO2–SnO (Co3O4@SnO2–SnO) predicted better performance compared to pure Co3O4, which strongly depends on the synthetic temperature. The Co3O4@SnO2–SnO prepared at a temperature of 250 °C (labeled Co3O4@SnO2–SnO-250) exhibited an outstanding specific capacitance of 325 F g−1 under the current density of 1 A g−1, which was much higher than those of Co3O4 (12.6 F g−1) and other composites. Additionally, the sample also exhibited good cycle stability performance with a retention rate of 100% after 5000 cycles at a current density of 5 A g−1. Through X-ray photoelectron spectroscopy analysis, the presumed mechanism was that Sn-Ox decreases the surface electron densities of Co3O4, which is beneficial to OH adsorption and specific capacitance improvement, and the synthetic temperature had a strong impact on the microstructure and thus on the surface electron densities. The most.obvious finding to emerge from this study is that the specific capacitance can be improved through adjusting the surface electron densities of transition metal oxides.  相似文献   

13.
《Ceramics International》2021,47(19):27210-27216
A composite of Co3O4/holey graphene (Co3O4/HG) was prepared via a facile hydrothermal route, and was then processed into an electrode by an electrophoretic deposition process. Holey graphene (HG) wrapped Co3O4 to form a 3D skeleton network, thereby providing high electrical conductivity, and the holes in HG could further shorten the electrolyte ion diffusion pathway. Therefore, by adjusting the mass ratio of Co3O4 to HG, the Co3O4/HG composite afforded an enhanced capacitance of 2714 F g−1 (at a current density of 1 A g−1), which is 20 times higher than that of pure Co3O4. To further explore the practical applications of Co3O4/HG, a symmetric supercapacitor employing Co3O4/HG was fabricated. The supercapacitor functioned stably at potentials up to 1.2 V, with an enhanced energy density of 165 Wh kg−1 and a high power density of 0.6 kW kg−1 at 1 A g−1.  相似文献   

14.
《Ceramics International》2020,46(15):23773-23779
Lithium-rich layered oxides with high energy density have been intensively investigated as advanced lithium-ion batteries cathode materials. However, capacity degradation and voltage decay caused by irreversible lattice oxygen loss and structural transformation during cycling restrict their application. Herein, we proposed a high valance cations Nb5+ doping strategy and synthesized a series of Li1.2Mn0.54-x/3Ni0.13-x/3Co0.13-x/3NbxO2 (x = 0, 0.01, 0.02 and 0.03) cathode materials. The effects of Nb5+ doping on crystallographic structure and electrochemical property were systematically studied. In virtue of the large ionic radii and strengthened Nb–O bonds, the doped samples present commendable structural stability and expanded interlayer spacing for Li-ions migration, which ensures the upgraded cyclic stability and rate performance. In particular, the electrode with x = 0.02 delivers a discharge specific capacity of 265.8 mAh g-1 at 0.2 C with decelerated voltage decay, while 86.9% capacity are remained after long-term cycles. Moreover, excellent discharge specific capacity of 153.4 mAh g−1 is still attained at 5 C accompanied with enhanced Li-ion diffusion kinetics.  相似文献   

15.
《Ceramics International》2017,43(12):8819-8823
Bi2O3 is a promising sodium storage material due to its high gravimetric specific capacity. However, Bi2O3 possesses lower electrochemical performance due to its poor electrical conductivity and structural integrity during Na+ insertion/extraction process. Here, we prepared a carbon coated Bi2O3 nanocomposite by a redox reaction and a carbon coating process. In this nanocomposite, the carbon layer can avoid the direct contact between Bi2O3 and electrolyte, which inhibits the repeated formation and decomposition of solid electrolyte interface film. Additionally, the carbon layer can enhance the electrical conductivity of Bi2O3 and suppress its aggregation due to its volume change during charge and discharge process. In addition, nano-sized Bi2O3 can reduce the transport distance of Na+ and electron. The nanocomposite shows excellent cycling performance and rate capability as anode for sodium-ion batteries. A high capacity of 421 mAh g−1 can be maintained after 100 cycles at 1500 mA g−1 and 392 mAh g−1 can be shown at 3200 mAh g−1.  相似文献   

16.
Hierarchical Co3O4 nanostructure is synthesized via a self-assembled process in molten hydroxides. The morphologies, crystal structures and the phase transformation processes are analyzed by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. As an anode material for lithium ion batteries, the hierarchical Co3O4 exhibit an initial capacity of 1336 mAh g−1 and a stable capacity of 680 mAh g−1 over 50 cycles. More importantly, high rate capability is obtained at different current densities between 140 and 1120 mA g−1. The improved electrochemical performance of Co3O4 could be attributed to the unique hierarchical nanostructure.  相似文献   

17.
《Ceramics International》2023,49(3):4153-4159
With the use of lithium batteries increasing year by year, resulting in a large number of waste lithium-ion batteries generated, bringing pressure to the ecological system while also causing a waste of Co resources. Although Co-based catalysts are also of interest in the Li–CO2 system, no research has been reported on the preparation of catalysts for value-added utilization of recovered Co. In this paper, Li–CO2 batteries with Co3O4/CNT cathodes were prepared by environmentally friendly hydrothermal method employing cobalt oxalate recycled from waste lithium-ion batteries as a Co source in combination with commercial CNT. Unlike traditional noble metal and transition metal-based catalysts, which are expensive and complicated, this work can further reduce the cost of batteries by recycling valuable Co sources from waste lithium-ion batteries. As a result, the battery has the discharge capacity of 2728 mAh g?1 at a current density of 100 mA g?1. Not only that, but it can reach more than 85 cycles at a limited capacity of 400 mAh g?1.  相似文献   

18.
《Ceramics International》2021,47(20):28634-28641
In this study, ZnIn2S4 (B-ZIS) and ZnIn2S4/C (S-ZIS) composites anode are synthesized using hydrothermal method and followed by ball-milling process. The initial discharge/charge capacities for bare ZnIn2S4 (B-ZIS) are 524 and 378 mAh g−1 under a current density of 1 A g−1, which suffers from gradually capacity fading. To improve its cycle stability, high-energy ball-milling process (HEBM) with carbon black is applied to fabricate S-ZIS spherical particles. The as-obtained composite anode exhibits enhanced electrochemical performances not only on cycle stability, but also reversible capacity. The discharge and charge capacity of S-ZIS approach to 823 and 679 mAh g−1 at the first cycle and retain 468 and 459 mAh g−1 after 500 cycles at the high current density of 1 A g−1. Furthermore, ex situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS) techniques are used to monitor the evaluation of crystal structure of B-ZIS during charge and discharge processes. The results indicate that the metallic Zn and In were observed at low potential voltage during sodiation process and successfully converted back to spinel phase at above 0.5 V. The presence of high reversibility nature of B-ZIS may leads to the superior cycling and excellent rate capability of S-ZIS which makes ZnIn2S4 a potential anode material of sodium ion batteries.  相似文献   

19.
《Ceramics International》2020,46(8):11570-11576
This paper we use ZnCl2 to activates and reduces rice husks to produce SiOx@N-doped carbon core-shell nanocomposites with inner voids is a facile and effective strategy to improve the electrochemical performance. As an anode material for the lithium-ion batteries, the composites exhibit a high reversible capacity (1315 mAh g−1 after 100 cycles at 100 mA g−1) and long-term stability (584 mAh g−1 after 500 cycles at 500 mA g−1). Such outstanding cycling stability is attributed to the small size of the SiOx particles with inner voids and the carbon layer coating can guarantee good structural integrity for long cycle stability. As a cathode material for Li–S batteries, the composite displays a high capacity and good stability (675 mAh g−1 after 100 cycles at 0.1C). Its good performance and facile preparation will improve the utilization of rice husk waste.  相似文献   

20.
《Ceramics International》2022,48(12):17279-17288
Layered high-nickel LiNi0.8Co0.1Mn0.1O2 is a promising candidate of the next generation cathode materials for lithium-ion batteries. However, severe cycling instability and fast capacity drop induced by anisotropic structured change restrict its wide application. To address these defects, the structure design of cathodes is conducted. Herein, a hierarchical layered LiNi0.8Co0.1Mn0.1O2 cathode consisting of orderly stacking hexagonal nanosheets with exposed active {104} facets is successfully synthesized by an improved co-precipitation process and followed with a high temperature lithiation reaction. Benefiting from this unique texture, exposed active {104} facets with lower surface energy supply 3D barrier-free Li+ ion diffusion channels, significantly improving the efficiency of the Li+ diffusion. Moreover, the consistent arrangement of nanosheets in the manner of the {001} facets close attachment is beneficial to alleviate the stress caused by the anisotropic structured change. Thus, this cathode material presents both superior reversible capability (203.8 mAh g?1 at 0.1C, 184.5 mAh g?1 at 1 C, 173.0 mAh g?1 at 5 C and 161.3 mAh g?1 at 10 C) and stable cycling performance (capacity retention of 89.3% after 100 cycles at 1 C, 55.3% after 300 cycles at 5 C and 59.6% after 300 cycles at 10 C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号