首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polypyrrole (PPy) and Polypyrrole‐ZnO (PPy‐ZnO) nanocomposites were electrodeposited on mild steel and its corrosion protection ability was studied by Tafel and Impedance techniques in 3.5% NaCl solution. Pure Polypyrrole film was not found to protect the mild steel perfectly but the coating with nano‐sized ZnO (PPy‐ZnO) has dramatically increased the corrosion resistance of mild steel. Electrochemical Impedance Spectroscopy (EIS) measurements indicated that the coating resistance (Rcoat) and corrosion resistance (Rcorr) values for the PPy‐ZnO nanocomposite coating was much higher than that of pure PPy coated electrode. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
The carbon nanotubes (CNTs) have been loaded on the melamine foam (MF) to form the composite (CNTs/MF) by dip‐dry process, then polypyrrole (PPy) is coated on CNTs/MF (PPy/CNTs/MF) through chemical oxidation polymerization by using FeCl3·6H2O adsorbed on CNTs/MF as oxidant to polymerize the pyrrole vapor. Finally, CNTs are coated on the surface of PPy/CNTs/MF to increase the conductivity of the composite (CNTs/PPy/CNTs/MF) by dip‐dry process again. The composites have been characterized by X‐ray diffraction spectroscopy, scanning electron microscopy and electrochemical method. The results show that the structure of the composites has obvious influence on their capacitive properties. According to the galvanostatic charge/discharge test, the specific capacitance of CNTs/PPy/CNTs/MF is about 184 F g?1 based on the total mass of the composite and 262 F g?1 based on the mass of PPy (70.2 wt % in the composite) at the current density of 0.4 A g?1, which is higher than that of PPy/CNTs/MF (120 F g?1 based on the total mass of the composite and 167 F g?1 based on the mass of the PPy). Furthermore, the capacitor assembled by CNTs/PPy/CNTs/MF shows excellent cyclic stability. The capacitance of the cell assembled by CNTs/PPy/CNTs/MF retains 96.3% over 450 scan cycles at scan rate of 20 mV s?1, which is larger than that assembled by CNTs/PPy/MF (72.5%). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39779.  相似文献   

3.
Highly sensitive glucose oxidase (GOD) electrodes were fabricated on the basis of microstructured polypyrrole (PPy) films. The microstructures of the PPy films had a morphology like cups and were arranged in a density of approximately 4000 units/cm2. GOD was immobilized in microstructured PPy films coated on a Pt or stainless steel (SS; AISI 321) substrate electrode. The GOD/PPy/Pt electrode showed a linear response to glucose concentrations in the range of 0–17 mM at a potential of 0.4 V (vs a saturated calomel electrode). Its sensitivity was measured to be approximately 660 nA/(mM cm2) at 15°C, and the response time (t95%) was approximately 20 s. In comparison, the sensitivity of the GOD/PPy/Pt electrode based on a flat PPy film was only approximately 330 nA/(mM cm2) under the same conditions. The sensitivity of the microstructured GOD/PPy/Pt electrode could be increased to as high as approximately 2400 nA/(mM cm2) at 37°C. The microstructured GOD/PPy/SS electrode had a sensitivity of approximately 550 nA/(mM cm2) and a t95% value of approximately 30 s at 15°C and 0.4 V. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2550–2554, 2005  相似文献   

4.
PPy/graphene/rare earth ions (PPy/GR/RE3+) were prepared using an in situ chemical polymerization of the monomer in the presence of FeCl3 oxidant and p-toluenesulfonic acid dopant. The PPy/GR/RE3+ composites were characterized by FT-IR spectroscopy, four-point probe conductivity, scanning electron microscopy and transmission electron microscopy. The maximum conductivity of PPy/GR/Gd3+ composites is about 9.71 S/cm found with 1 wt% GR and 2 wt% Gd3+ at room temperature. The capacitance of the composite electrodes was investigated with cyclic voltammetry. As results of this study, the PPy/GR/Gd3+ was effective to obtain fully reversible and very fast faradaic reaction. Hence, the PPy/GR/Gd3+ could contribute to the pseudo-capacitive charge storage. The PPy/GR/Gd3+ exhibited higher specific capacitance of ~238 F/g at 1 A/g current density. Thermal gravimetric analysis demonstrates an improved thermal stability of PPy in the PPy/GR/Gd3+ composites.  相似文献   

5.
Polypyrrole (PPy) films (2 μm) containing titanate nanotubes (TiNT) were deposited from 0.5 mol dm−3 pyrrole (Py) and 1 g dm−3 of TiNT in 0.1 mol dm−3 aqueous oxalic acid on 904 L stainless steel (SS) 0.1 mm thickness at 298 K. Electron microscopy showed that the nanotubes were adsorbed on the PPy surface and uniformly dispersed in the polymer matrix. The PPy/TiNT composite contained <10 wt.% titanates which showed an increase of 53% hardness compared with polypyrrole alone. The TiNT provide nucleation centres to catalyze the polymerization of pyrrole and can adsorb up to 240 mg g−1 of the monomer. The corrosion rates for SS, SS/PPy and SS/PPy/TiTN composites, evaluated by linear sweep voltammetry and open-circuit potential measurements in 3% w/v NaCl, were 1.61, 0.008 and 0.004 mg dm−2 day−1, respectively, indicating that corrosion rates of stainless steel decreased by up to three orders of magnitude in the presence of the composite films.  相似文献   

6.
Polyaniline/polypyrrole (PAni/PPy), polyaniline-phosphotungstate/polypyrrole (PAni-PW12/PPy) and PAni/PPy-PW12 have been successfully electrodeposited on mild steel (MS) by cyclic voltammetry in aqueous oxalic acid solutions. It was found that the incorporation of PW12 enhanced the corrosion resistance of PAni/PPy coating. Moreover, in comparison to PAni-PW12/PPy, PAni/PPy-PW12 coating exhibited better corrosion resistance for mild steel. After immersion of 36 h in 0.1 M HCl, for instance, the polarization resistance of PAni/PPy-PW12 coating reached 1695 Ω cm2, more than those of both PAni/PPy and PAni-PW12/PPy.  相似文献   

7.
The main aim of this study is to investigate the effect of silver‐doped zinc oxide (Ag‐ZnO) loading on the structural, morphological, thermal and electrical properties, and gas sensing behavior of polypyrrole (PPy)/phenothiazine (PTZ)‐blend nanocomposites. The composites are characterized by FTIR, XRD, SEM, TEM, DSC, TGA, and impedance studies. FTIR spectra exhibit the presence of Ag‐ZnO in the PPy/PTZ blend. XRD analysis shows that the semicrystalline behavior of the polymer blend is greatly enhanced by the addition of Ag‐doped ZnO particles. Uniform dispersion of nanoparticles in the polymer is obtained from SEM analysis. The TEM images confirm the presence of spherically shaped nanoparticles in PPy/PTZ blend with a size of 10–25 nm. The DSC measurement indicates that the glass transition temperature of PPy/PTZ blend was significantly improved in the presence of Ag‐doped ZnO nanoparticles. The thermal decomposition temperature of nanocomposite obtained from TGA shows an increase with increase in the content of Ag‐ZnO particles. The incorporation of Ag‐doped ZnO nanoparticles to PPy/PTZ blend exhibit increase in the AC conductivity and dielectric properties of the nanocomposite, due to the pilling of charges at the extended interface of the composite system. The DC conductivity of the nanocomposite increases with the loading of nanoparticles. The ammonia gas sensing performance of PPy/PTZ/Ag‐ZnO nanocomposite is analyzed, and the result shows that the fabricated blend composite can be used as a promising candidate for the easy access of gas molecules. J. VINYL ADDIT. TECHNOL., 26:187–195, 2020. © 2019 The Authors. Journal of Vinyl and Additive Technology published by Wiley Periodicals, Inc. on behalf of Society of Plastics Engineers.  相似文献   

8.
《Polymer Composites》2017,38(10):2146-2155
Electrically conducting fibers were prepared through in situ oxidative polymerization of pyrrole (Py) in the presence of peach palm fibers (PPF) using iron (III) chloride hexahydrate (FeCl3·6H2O) as oxidant. The polypyrrole (PPy) coated PPF displayed a PPy layer on the fibers surface, which was responsible for an electrical conductivity of (2.2 ± 0.3) × 10−1 S cm−1, similar to the neat PPy. Electrically conductive composites were prepared by dispersing various amounts of PPy‐coated PPF in a polyurethane matrix derived from castor oil. The polyurethane/PPy‐coated PPF composites (PU/PPF–PPy) exhibited an electrical conductivity higher than PU/PPy blends with similar filler content. This behavior is attributed to the higher aspect ratio of PPF–PPy when compared with PPy particles, inducing a denser conductive network formation in the PU matrix. Electromagnetic interference shielding effectiveness (EMI SE) value in the X‐band (8.2–12.4 GHz) found for PU/PPF–PPy composites containing 25 wt% of PPF–PPy were in the range −12 dB, which corresponds to 93.2% of attenuation, indicating that these composites are promising candidates for EMI shielding applications. POLYM. COMPOS., 38:2146–2155, 2017. © 2015 Society of Plastics Engineers  相似文献   

9.
Polypyrrole/multi-walled carbon nanotubes (PPy/MWCNT) and its carboxylic functionalized (PPy/MWCNT-COO) composite films were successfully electropolymerized by cyclic voltammetry as protective coating against corrosion on 60Cu–40Zn brass alloy surface. It yielded to strongly adherent and smooth nanocomposite films. Kinetics of the corrosion protection was investigated in 3.5 wt% NaCl solutions by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The results showed that the presence of MWCNT in PPy coat considerably reduces the corrosion rate of 60Cu–40Zn brass alloy. The enhanced inhibition is most likely due to interaction between MWCNT and PPy. This in turn, improves the alloy passivation improvement and alters the permselectivity of the coating from anionic selectivity to the cationic selectivity. Moreover, PPy/MWCNT-COO functionalized nanocomposite provided higher corrosion resistance coating than PPy/MWCNT alone.  相似文献   

10.
Highly conductive polypyrrole/graphite nanosheets/Gd3+ (PPy/nanoG/Gd3+) composites are fabricated via in situ polymerization using p‐toluenesulfonic acid as a dopant and FeCl3 as an oxidant. The effects of the graphite nanosheets and Gd3+ loading on the electrical conductivity are investigated. The maximum conductivity of PPy/nanoG/Gd3+ composites about 17.86 S/cm found with 3 wt% graphite nanosheets and 6 wt% Gd3+ at room temperature. The results showed that the high‐aspect‐ratio structure of graphite nanosheets played an important role in forming a conducting network in PPy matrix. Thermal gravimetric analysis demonstrates an improved thermal stability of PPy in the PPy/nanoG/Gd3+ composites. The microstructures of PPy/nanoG/Gd3+ are evidenced by the SEM and TEM examinations. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

11.
Supercritical carbon dioxide (SC‐CO2) has been used to assist the preparation of conductive polypyrrole/cellulose diacetate (PPy/CDa) composites by in situ chemical oxidative polymerization. The morphology and conductivity of resulted composites were investigated with scanning electron microscopy and four‐probe method, respectively. With the assistance of strong swelling effect of SC‐CO2, composite films were obtained with a macroscopically homogeneous structure and conductivity up to 10?1 S cm?1 order of magnitude. Increasing the pressure of SC‐CO2 increased conductivity, while increasing the temperature decreased conductivity. For comparison, PPy/CDa composite was also prepared with conventional oxidative method in aqueous solution. From the viewpoint of conductivity and environmental protection, the SC‐CO2 method showed its superiority over the conventional one. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4575–4580, 2006  相似文献   

12.
Organic coating approaches for corrosion protection with inherently conducting polymers have become important because of restriction on the use of heavy metals and chromates in coatings due to their environmental problems. The present work is directed towards the synthesis of polyaniline (PANI) and polyaniline–SiO2 composites (PSCs) by chemical oxidation polymerization in the presence of phosphoric acid and evaluation of synthesized PANI and PSCs for protection of mild steel from corrosion in a strong aggressive medium (i.e. 1.0 mol L–1 HCl). A suitable coating with PSC was formed on mild steel using epoxy resin by the powder coating technique. A comparative study of the corrosion protection efficiency of mild steel coated with PANI and PSC in 1.0 mol L–1 HCl solution was evaluated using the Tafel extrapolation, chrono‐amperometry and weight loss methods. The PSC coating showed that a significant reduction in the corrosion current density reflects the better protection of mild steel in an acidic environment. Higher protection efficiency up to 99% was achieved by using PSC‐coated mild steel at 6.0 wt% loading of PSC in epoxy resin. The coating performance and corrosion rate of mild steel were investigated by using immersion of polymer‐coated mild steel in 1.0 mol L–1 HCl for 60 days and indicated that PSC‐coated mild steel showed better performance from corrosion than PANI in an acidic medium.© 2012 Society of Chemical Industry  相似文献   

13.
Flexible sheets consisting of acrylonitrile–butadiene rubber (NBR) and vapor-grown carbon fiber (VGCF) are newly prepared varying the composition (VGCF 10–30 wt%) for use as a current collector of supercapacitor electrodes. The electrical conductivity of as-prepared VGCF/NBR current collector can be enhanced as the content of VGCF increases. The VGCF/NBR current collector is then electrodeposited with pyrrole using a potentiodynamic cyclic voltammetry to yield a polypyrrole (PPy)/VGCF/NBR composite electrode. Cyclic voltammetry result for the PPy/VGCF/NBR composites shows that the sample with 30 wt% VGCF achieves a maximum specific capacitance (125.8 F g?1) at 5?mV?s?1 and reaches a lower specific capacitance at higher scan rates. In addition, the flexibility of supercapacitor electrode of PPy can also be established with a comparable capacitance value by using the NBR-based current collector.  相似文献   

14.
The reduced graphene oxide/nonwoven fabric (rGO/NWF) composites have been fabricated through heating the NWF coated with the mixture of GO and HONH2·HCl at 130°C, during which the GO is chemically reduced to rGO. Then the composites of polypyrrole (PPy)/rGO/NWF have been prepared through chemically polymerizing pyrrole vapor by using the FeCl3·6H2O adsorbed on rGO/NWF substrate as oxidant. Finally, multiwalled carbon nanotubes (MWCNTs) are used as conductive enhancer to modify PPy/rGO/NWF through dip‐dry process to obtain MWCNTs/PPy/rGO/NWF. The prepared composites have been characterized and their capacitive properties have been evaluated in 1.0M KCl electrolyte by using two‐electrode symmetric capacitor test. The results reveal that MWCNTs/PPy/rGO/NWF possesses a maximum specific capacitance (Csc) of about 319 F g?1 while PPy/rGO/NWF has a Csc of about 277.8 F g?1 at the scan rate of 1 mV s?1 and that optimum MWCNTs/PPy/rGO/NWF retains 94.5% of initial Csc after 1000 cycles at scan rate of 80 mV s?1 which is higher than PPy/rGO/NWF (83.4%). Further analysis reveals that the addition of MWCNTs can increase the charger accumulation at the outer and inner of the composites, which is favorable to improve the stability and the rapid charge‐discharge capacity. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41023.  相似文献   

15.
Hua Bai 《Polymer》2007,48(18):5259-5267
The composites of polypyrrole (PPy) and poly(vinyl alcohol) (PVA) with aligned 3-dimensional (3D) microstructures have been fabricated via vapor deposition polymerization (VDP) of pyrrole onto the microstructured composites of PVA and FeCl3 (PVA-FeCl3) formed by directional freezing. In these composites, the microstructures of PVA act as the frameworks and the conducting polymer components provide the materials with conductive function. The composites are foam-like with low weight density. However, they have good mechanical properties, and can be easily mechanically processed into various desired shapes. The apparent conductivity of the composite containing 20 wt% PPy was measured to be approximately 0.1 S cm−1. The ammonia gas sensor based on this 3D composite exhibited high sensitivity. The strategy developed here can be extended to fabricate the 3D microstructured conductive composites by using other conducting polymers or water-soluble polymers.  相似文献   

16.
Conducting composites (∼3 mm in thickness) of polypyrrole (PPy) and porous crosslinked polystyrene (PCPS) were prepared by first impregnating PCPS with iodine (I2), and then contacting it with pyrrole (Py). Both these steps were carried out with and without supercritical carbon dioxide. The use of supercritical CO2 as a solvent for I2 and Py facilitated the transport and deposition of these substances in the pores of the permanently porous host and produced composites with conductivities as high as 10−3 S cm−1. Moreover, the deposition of I2 in the pores could be controlled via the CO2 pressure. The bulk and surface conductivities of the composite exhibited percolation behavior with respect to the amount of the I2 deposited, whereas the volume conductivity exhibited a stepwise transition at approximately 100 wt% PPy+I2 complex formed (with respect to the original mass of PCPS). Optical micrographs suggest that non-uniform distributions of PPy are obtained in the pores below this transition.The percolation threshold was as low as 10 wt% so that the stability and mechanical strength of the composites were approximately the same as those of the host PCPS. This was verified by TGA and compressive strength measurements. The temperature dependence of the conductivity conformed with Mott's variable-range hopping (VRH) model for three-dimensional electronic transport. However, the data could be correlated equally well with the CELT model.  相似文献   

17.
ABSTRACT

Conjugated polymer/graphite nanocomposites have been known as high performance materials owing to improve the physicochemical properties relative to conventional once. Multilayered polymer nanocomposites based on polypyrrole (PPy), polyvinylchloride (PVC) as matrices and p-phenylene diamine (PDA) as linker were prepared via chemical in situ polymerization process and subsequently investigated the physical characteristics of fabricated nanocomposites at various loadings. The structural characterization and morphology of prepared nanocomposites were inspected by Fourier transform infrared spectroscopy (FTIR), X-ray photon spectroscopy (XPS), energy dispersive X-ray spectroscope (EDX), field emission scanning electron microscope (FESEM), respectively. The composite III showed higher thermal stability at 10 wt% loading of PPy. According to differential scanning calorimetry (DSC), the glass transition temperature (Tg), melting temperature Tm, and crystallization temperature (Tc) of nanocomposites increases with PPy loading (2–10 wt%) owing to crosslinking and chain rigidity. Moreover, higher surface area was displayed by the multilayered PPy/PVC/PDA@FG nanocomposites. Remarkably, electrical conductivity of ultimate nanocomposites was also found to be a function of PPy loading.  相似文献   

18.
Green polymers as corrosion inhibitors are gradually used to protect metal in solution environment. A polyaspartic acid threonine derivative (PASP-Thr) was synthesized and its structure was characterized by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance. The corrosion inhibition effect of polyaspartic acid (PASP) and PASP-Thr on carbon steel in simulated cooling water was investigated by weight loss tests and electrochemical measurements. Experimental results show PASP-Thr as a mixed-type inhibitor exhibits higher corrosion inhibition efficiency than PASP, and the inhibition efficiency of PASP-Thr reached 93.06% at the dosage was 200 mg L−1. The carbon steel surface in different situations was analyzed using atomic force microscope, scanning electronic microscope/energy dispersive X-ray, and FTIR, demonstrates the formation of a protective film on carbon steel surface. The inhibition effect of PASP-Thr was primarily attributed to the protective film formed on steel surface by physical and chemical adsorption. Moreover, quantum chemical calculation elaborated the relationship between the inhibition efficiency and the PASP-Thr molecular structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47242.  相似文献   

19.
In this work, a new method, consists of synthesis of urethane acrylate (UA) followed by in situ polymerization of pyrrole using cerium (IV) as an oxidant and UV‐curing of the composites, for preparing polypyrrole–UA (PPy–UA) composite films was described. It appeared that dielectric constants of the composites increased with increasing the PPy content and decreased with increasing the frequency from 10?2 to 107, indicating an interfacial Maxwell–Wagner contribution to the permittivity. An incorporation of a small amount of PPy (15% Py) to UA matrix increased their dielectric constants more than 4 × 104 (41,259) at 10?2 Hz. So, the incorporation of PPy was very effective for enhancing the dielectric properties of UA matrix. Furthermore, the significant enhancement in dielectric properties (loss tangent and dielectric constant) contributes to the improvement in electromagnetic interference shielding efficiency. Composite films were characterized using Fourier transform infrared attenuated total reflectance (FTIR‐ATR) spectrophotometer and 1H‐NMR. It was seen that PPy is blended with the UA matrix at the molecular level through H‐bonding interactions. A linear relationship was also observed between the characteristic groups' absorbances of PPy (from FTIR‐ATR) and dielectric constant values (from dielectric spectrometer). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

20.
The novel composites of sulfonated multi-walled carbon nanotubes (sMWCNTs) modified polyaniline (PANI) nanorods (PANI/sMWCNTs) were synthesized successfully by in situ oxidative polymerization method in the HClO4 solution. FTIR and Raman spectra revealed the presence of π–π interaction between the PANI and the sulfonated carbon nanotubes and the formation of charge transfer composites. It was found that the specific capacitance of the PANI/sMWCNT composites was markedly influenced by their morphological structure and the content of PANI which was coated onto the sMWCNT. The specific capacitance of the PANI/sMWCNT composite exhibited a maximum value of 515.2 F g−1 at the 76.4 wt% PANI. The charge–discharge tests showed the PANI/sMWCNT composites possessed a good cycling stability (below 10% capacity loss after 1000 cycles) compared to PANI nanorods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号