首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In the present study, the use of supercritical fluid extraction was investigated for selected compounds from the plant Japanese knotweed (Polygonum cuspidatum Siebold & Zucc.). The effects of parameters such as type of modifier, pressure, temperature and time on the extraction efficiency of piceid, resveratrol and emodin were studied. The optimal conditions were found as follows: modifier acetonitrile, 40 MPa, 100 °C and 45 min. SFE results were compared with those obtained by conventional Soxhlet extraction carried out for 4 h. The extracts obtained using these two techniques were analysed by liquid chromatography coupled with UV detection. LiChrospher® 100, RP-18 column (125 mm × 4 mm, 5 μm) coupled with gradient elution acetonitrile in acidified water was used for the separation of compounds at flow rate 0.5 mL min−1. Detection was carried out at 306 nm. Limits of detection were 21, 8 and 52 μg L−1 for piceid, resveratrol and emodin, respectively. The linear range was 0.5-10 mg L−1 for piceid and resveratrol, and 1-50 mg L−1 for emodin with correlation coefficients above 0.9981. Based on the comparison of both methods extracted amount of piceid by Soxhlet extraction is approximately 10 times higher than by SFE method, while the extraction yield of emodin by Soxhlet extraction in approx. 2.5 times lower than by SFE. The advantage of SFE over Soxhlet extraction method is more than 5 times shorter extraction time period.  相似文献   

2.
E. Ríos 《Electrochimica acta》2005,50(13):2705-2711
We conducted a study on the electroreduction of O2 in alkaline solution at room temperature on pure thin oxide electrodes of composition MnxCo3−xO4 (0 ≤ x ≤ 1) using the double channel electrode flow cell (DCEFC). The oxides were prepared at 150 °C and deposited by spray pyrolysis onto titanium substrates. The oxygen reduction reaction (orr) occurs through “interactive” and “parallel” pathways, and the ratio of O2 molecules reduced to OH ions with respect to those reduced to HO2 ions depends on the oxide stoichiometry and on the applied overpotential. The formation of HO2 increases when the manganese concentration increases. The results obtained for the orr show that the number of electrons transferred per O2 molecule decreases from 3 to 2 and the ratio k1/k2 (the rate constants for direct reduction to OH and indirect reduction to HO2) increases, respectively, in the overpotential studied range (−0.05 to −0.6 V). The Mn3+ ions placed in the B-sites of the spinel structure seem to be the active centres, where hydrogen peroxide is formed.  相似文献   

3.
Pure and Zn2+ and/or F doped hydroxyapatite (HA) were synthesized by the precipitation method and detection of ion incorporations into the HA structure was investigated by a non invasive Fourier transform infrared (FTIR) spectroscopic technique. The synthesized materials were sintered at 1100 °C for 1 h. The Zn2+ addition amount was kept constant at 2 mol% whereas F amount was changed. The weight fractions of the HA and CaO were calculated by Rietveld analysis by using GSAS. Co-doping of Zn2+ and F ions increased the stability of HA. A detailed analysis of FTIR spectroscopy was performed to observe whether HA structure was formed or not. The bands corresponding to the (PO43−) functional group and (OH) functional group were observed. Moreover, the ion incorporation into the HA structure and the amount of the ions were analyzed by FTIR spectroscopy. The OH…F bands were observed at 711 cm−1 and 3543 cm−1. The Zn–O stretching band was observed at 3403 cm−1 and 433 cm−1. The area calculation under the OH…F bands and (OH) stretching and librational modes of the bands revealed that as the F amount increased, the area under the bands at 711 cm−1 and 3543 cm−1 increased whereas the area under the (OH) stretching and librational modes of the bands decreased due to the fact that F ion replaced with (OH) ion in HA structure. All these results showed that Zn2+ and F ions were successfully incorporated into the HA structure. Moreover, the amount of F ions in the HA structure was successfully confirmed by determination of the area under the F and (OH) related bands.  相似文献   

4.
N.W. Khun 《Electrochimica acta》2009,54(10):2890-1544
Nitrogen doped tetrahedral amorphous carbon (ta-C:N) thin films were deposited on p-Si (1 1 1) substrates (1 × 10−3 to 6 × 10−3 Ω cm) by a filtered cathodic vacuum arc technique with different nitrogen flow rates (3 and 20 sccm). The ta-C:N film coated samples were used as working electrodes to detect trace heavy metals such as zinc (Zn), lead (Pb), copper (Cu) and mercury (Hg) by using linear sweep anodic stripping voltammetry in 0.1 M KCl solutions (pH 1). The influence of nitrogen flow rate on the sensitivity of the films to the metal ions was investigated. The results showed that the current response of the ta-C:N film electrodes was significant to differentiate all the tested trace metal ions (Zn2+, Pb2+, Cu2+, and Hg2+) and the three ions (Pb2+ + Cu2+ + Hg2+) could be simultaneously identified with good stripping peak potential separations.  相似文献   

5.
The physical and chemical properties of chromium chlorides have been studied in fused NaCl-2CsCl eutectic at the temperature range 843-1008 K using an electrochemical cell containing a platinum-oxygen electrode with solid electrolyte membrane, which was used as pO2− indicator electrode. The concentration of oxygen ions in the solution was modifying by dropping the calculated amount of BaO. Titration of Cr3+ chlorocomplex by O2− ions demonstrated the precipitation of CrOCl and Cr2O3. The solubility constants of these compounds were calculated. E-pO2− and three-dimensional E-pO2−-T type diagrams, which summarized the properties of chromium species in the melt, were determined.  相似文献   

6.
A potentiometric aluminium sensor, based on the use N,N′-bis(salicylidene)-1,2-cyclohexanediamine (NBSC) as a neutral carrier, in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers; 2-nitrophenyloctylether (o-NPOE), tri-n-butyl phosphates (TBP), dioctylpththalate (DOP) & chloronapthalen (CN), and anion excluder, sodium tetraphenylborate (NaTPB) was studied. The best performance was obtained with a membrane composition of PVC: o-NPOE: NBSC: NaTPB ratio (w/w; mg) of 150:150:5:5. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 1.0 × 10−8-1.0 × 10−1 M with a lower detection limit of 5.0 × 10−9 M and a Nernstian slope of 20.3 ± 0.1 mV decade−1 of activity. Influence of the membrane composition and possible interfering ions was investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor shows response time of <5 s and can be used for about 3 months without any considerable divergence in their potential response. Selectivity coefficients determined by matched potential method (MPM) indicate high selectivity for aluminium (III) ion. The proposed electrode shows fairly good discrimination of aluminium (III) from many metal ions. It was successfully applied for direct determination of aluminium (III) in biological, industrial and environmental samples. The electrode can be used in the pH range of 2.0-9.0 and mixtures containing up to 20% (v/v) non-aqueous content. It was used as an indicator electrode in potentiometric titration of aluminium ion vs. EDTA.  相似文献   

7.
Membranes of dicyclohexano-24-crown-8 (I) as an ion-selective compound in poly(vinyl chloride) (PVC) based matrix have been tried for cadmium(II)-selective sensors. The effect of anion excluder, sodiumtetraphenylborate (NaTPB) and plasticizers dibutylphthalate (DBP), dioctylphthalate (DOP), di(butyl)butylphosphonate (DBBP), 1-chloronaphthalene (CN), tri-butylphosphate (TBP) and tris-(2-ethyl hexyl)phosphate (TEHP) on the performance of the membrane sensor has also been studied. It was observed that the membrane having the composition I: NaTPB:DBBP:PVC in the ratio 10:1:100:100 exhibited the best performance with a wide working concentration range of 3.0 × 10−5 to 1.0 × 10−1 M, a Nernstian slope of 30.0 ± 1.0 mV/decade of activity, and with a response time of 23 s. It was found selective to cadmium ions over a number of mono-, bi- and trivalent cations. The sensor works satisfactorily in the pH range of 2.0-5.4 and can successfully determine cadmium ions in partially non-aqueous medium having up to 40% (v/v) non-aqueous content. The sensor could be used as an indicator electrode in the titration of Cd2+ ions with EDTA.  相似文献   

8.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

9.
Perovskite solid solutions of (La0.6Sr0.4)(X1−yMgy)O3−δ (X = Ti, Zr, Al) were prepared by a coprecipitation method using corresponding aqueous solutions and ammonium carbonate solution. The freeze-dried powders were sintered in air at 1000-1500 °C for 1-36 h. Single phase solid solutions were produced in the compositions of (La0.6Sr0.4)(Zr0.6Mg0.4)O3−δ and (La0.6Sr0.4)(Al0.9Mg0.1)O3−δ where (3 − δ) < 3. For the compositions of X = Ti and Zr for y = 0.1 where (3 − δ) > 3, two phases including perovskite solid solution were produced at 1400-1500 °C. The stability of perovskite solid solution was closely related to the fraction of lattice oxygen atom (3 − δ). A relatively high conductivity was measured for (La0.6Sr0.4)(Al0.9Mg0.1)O3−δ (σ = 4.15 × 10−4 S/cm at 600 °C, activation energy 113.4 kJ/mol). The influence of fraction of oxide ion vacancy on the activation energy was small for δ = 0.1-0.3 of perovskite solid solution.  相似文献   

10.
A. Goux  D. Lincot 《Electrochimica acta》2006,51(15):3168-3172
The reduction of oxygen was studied in 0.1 M KCl at 70 °C using the rotating disk electrode (RDE) technique on platinum and electrodeposited ZnO thin film electrodes deposited on platinum substrates. In the absence of Zn2+ ions in solution, a Tafel slope of 139 mV dec−1 was obtained, a value close to that measured on bare platinum electrode (133 mV dec−1) and ascribed to the limitation of the reaction rate by the first electron transfer. The main difference between the noble metal and the oxide electrode was a shift of the curves towards more negative potentials. In the presence of Zn2+ ions, the current density decreased significantly and the Tafel slope was measured at 282 mV dec−1 showing that the electrode was partially blocked by zinc oxide formation reaction intermediates.  相似文献   

11.
The supercritical fluid extraction (SFE) followed by the dispersive liquid-liquid microextraction (DLLME) has been developed for extraction and determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. PAHs were employed as model compounds to assess the extraction procedure and were determined by gas chromatography-flame ionization detection (GC-FID). SFE of PAHs was performed at 313 K and 253.2 bar, at static and dynamic times 10 and 30 min, respectively. The extracted PAHs were collected in 1 mL of acetonitrile. Subsequently, 16 μL of chlorobenzene (as extraction solvent) was added to collecting solvent (1.0 mL of acetonitrile). Then, the resulted mixture was injected into 5.0 mL of aqueous solution, rapidly. After centrifugation, the PAHs in the sedimented phase were analyzed by GC-FID. Effects of significant parameters on the extraction in SFE and DLLME methods were investigated. Under the optimum conditions, the calibration plots were linear in the range of 0.4-41.6 mg kg−1 and the limits of detection (LODs) were 0.2 mg kg−1 for all of the analytes. Analysis of PAHs in different solid samples showed that the improved technique has great potential for PAHs analysis in marine sediments. SFE-DLLME leads to high preconcentration factor, easy use of DLLME in solid samples and solving the main problem of SFE that is the extra step (vaporization of large volume of toxic organic solvent) after extraction needed prior to final analysis.  相似文献   

12.
Two neutral ionophores, 2,12-dimethyl-7,17-diphenyltetrapyrazole (I) and 5,11-dibromo-25,27-dipropoxycalix[4]arene (II) have been explored for preparing PVC based membrane sensors selective to Pb2+. The addition of sodium tetraphenylborate and various plasticizers viz. DOS, TEHP, DBP, DOP and TBP has been found to substantially improve the performance (working concentration range, slope and response time) of the sensors. The best performance was obtained with the sensor having a membrane of composition (w/w) of (I) (1%):PVC (33%):TBP (65%):NaTPB (1%). The sensor exhibits Nernstian response in the concentration range 2.5 × 10−6 to 5.0 × 10−2 M Pb2+, performs satisfactorily over wide pH range (1.6-6.0) with a fast response time (∼10 s). The sensor was found to work satisfactorily in partially non-aqueous media up to 25% (v/v) content of acetone, methanol or ethanol and could be used over a period of 5 months. Potentiometric selectivity coefficients as determined by match potential method (MPM) indicate excellent selectivity for Pb2+ ions. The sensors could be used successfully in the estimation of lead in Eveready battery waste and also as an indicator electrode in potentiometric titration.  相似文献   

13.
Tri-n-butyl phosphate (TBP) was used as carrier for the transport of chromium (VI) through a hexane bulk liquid membrane. The transport efficiency of chromium (VI) by TBP was investigated under various experimental conditions such as pH of the feed phase (Cr (VI) solution), concentration of the receiving phase (NaOH solution), concentration of TBP in membrane, rate of stirring, effect of transport time, type of solvent, Cr (VI) concentration in feed phase, and effect of temperature. The transport efficiency increased with increasing carrier concentration from 7.5 × 10− 2 to 2.25 × 10− 1 mol/L. At high pH (donor phase) the transport rate of chromate ions decreased. At high stirring speed (300 rpm) the Cr (VI) transport from the feed phase to the strip phase was completed within 5 h at 27 °C. Under optimum conditions: donor phase 4.8 × 10− 4 mol/L K2Cr2O7 solution at pH 1.0 ± 0.1, acceptor phase 1.0 mol/L NaOH solution, membrane phase 2.25 × 10− 1 mol/L, stirring speed 300 rpm, and temperature 27 °C, the flux rate was found to be 2.90 × 10− 7 mol/m2 s.  相似文献   

14.
Chromium substituted strontium ferrites SrCrxFe12 − xO19 (x = 0.5, 1.0, 1.5, 2.0 and 2.5) have been synthesized via sol gel method and the dry gels obtained have been annealed with various inorganic template agents (KCl, KBr and KI). The powder X ray diffraction studies reveal a crystallite size of ~ 40-45 nm. The use of KCl as inorganic template agent leads to an increase in the crystallite size. This may be attributed to the fact that the coordination ability of Cl is maximum due to its larger charge to size ratio, which promotes crystal growth in one dimension leading to needle-like morphology. On the other hand, KI undergoes sublimation to form I2 which gets entrapped in the strontium ferrite crystal leading to a bubble-like morphology. A systematic change in the lattice constants, a and c, is not observed because the radius of Cr3+ ion (0.63 Å) is similar to that of Fe3+ ion (0.64 Å). The saturation magnetization decreases with increase in the chromium concentration from 43.03 emu/g to 17.40 emu/g due to the substitution of Fe3+ ions by less magnetic Cr3+ ions in 2a and 12k sites of the lattice. The coercivity decreases with increase in the chromium concentration due to decrease in magnetocrystalline anisotropy. In the presence of KCl and KBr, both saturation magnetization and coercivity increase and the saturation magnetization has the maximum value in case of samples annealed with KBr. However, with KI, the values of both saturation magnetization and coercivity decrease sharply which may be due to lower crystallinity due to bubble-like morphology because of the decomposition of KI to I2. The energy band gap for all the ferrite compositions is found to be ~ 2.2 eV and its value increases in the samples annealed with KI.  相似文献   

15.
Solid acid polymer electrolytes (SAPE) were synthesised using polyvinyl alcohol, potassium iodide and sulphuric acid in different molar ratios by solution cast technique. The temperature dependent nature of electrical conductivity and the impedance of the polymer electrolytes were determined along with the associated activation energy. The electrical conductivity at room temperature was found to be strongly depended on the amorphous nature of the polymers and H2SO4 concentration. The ac (100 Hz to 10 MHz) and dc conductivities of the polymer electrolytes with different H2SO4 concentrations were analyzed. A maximum dc conductivity of 1.05 × 10−3 S cm−1 has been achieved at ambient temperature for electrolytes containing 5 M H2SO4. The frequency and temperature dependent dielectric and electrical modulus properties of the SAPE were studied. The charge transport in the present polymer electrolyte was obtained using Wagner's polarization technique, which demonstrated the charge transport to be mainly due to ions. Using these solid acid polymer electrolytes novel Zn/SAPE/MnO2 solid state batteries were fabricated and their discharge capacity was calculated. An open circuit voltage of 1.758 V was obtained for 5 M H2SO4 based Zn/SAPE/MnO2 battery.  相似文献   

16.
A potentiometric aluminium sensor, based on the use AlMCM-41 as a neutral carrier, in poly(vinyl chloride) (PVC) matrix, is reported. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 1.0 × 10−7 to 1.0 × 10−1 M with a detection limit of 8.6 × 10−8 M and a Nernstian slope of 19.5 ± 0.4 mV/decade of activity. The best performance was obtained with membrane composition 30% poly(vinyl chloride), 67% acetophenone, 3% ionophore and 2 mL tetrahydrofuran. Fast and stable response, good reproducibility and long-term stability are demonstrated. The response time of the sensor is ∼10 s and membrane could be used over a period of 3 months without any considerable divergence in potentials. Selectivity coefficients were determined by matched potential method (MPM). The AlMCM-41-based sensor is suitable for use in aqueous solution of pH 3-6. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. It was used to determine Al3+ in drugs and food products.  相似文献   

17.
The PVC membrane, containing benzyl bisthiosemicarbazone (BTC) as a suitable ionophore, exhibited a Nernstian response for the Nd3+ ions over a wide concentration range between 1.0 × 10−2 and 1 × 10−6 M, with a detection limit of 6.2 × 10−7 M in the pH range of 3.7-8.3. It demonstrated a fast response time (<10 s) and it could be used for at least 7 weeks without any major potential deviation. Furthermore, the electrode revealed high selectivity with respect to all the common alkali, alkaline earth, transition and heavy metal ions, including the members of the lanthanide family other than Nd3+. Concerning its applications, it was effectively employed for the determination of neodymium ions in soil and sediment samples and its validation with CRM.  相似文献   

18.
Conducting polypyrrole membranes were deposited on glassy carbon electrodes by electropolymerizing pyrrole in the presence of Eriochrome Blue-Black B (EBB) as the counter anion. The electrodes were then subjected to several oxidation/reduction potential steps in pure silver nitrate solution for successive accumulation/stripping of silver species. This electrochemically mediated doping/templating generated selective recognition elements in the EBB/PPy film for silver ions. The resulting sensor exhibited a considerable enhancement in the potentiometric and voltammetric response characteristics: extending the linear dynamic range and lowering the detection limit. In the potentiometric mode, the sensor showed highly reproducible response with a Nernstian slope of 58.5 ± 0.3 mV per decade of Ag+ activity over a linear range spanning seven orders of magnitude (1 × 10−8 to 1 × 10−1 M Ag+), with a detection limit of ∼6 × 10−9 M. The electrodes demonstrated high selectivity over a large number of cations including alkali, alkaline earth and several transition and heavy metal ions, and could be used over a wide pH range of 1-8.5. The EBB/PPy modified electrode was also used for preconcentration and differential pulse anodic stripping voltammetric (DPASV) measurements. The DPASV peak current was dependent on the concentration of Ag+ over the range 3 × 10−10 to 1 × 10−4 M. The presence of 1000-fold excess of Cd2+, Cu2+, Cr3+, Co2+, Mn2+, Fe2+, Fe3+, Ni2+ and Pb2+ can be tolerated in the determination of silver ion.  相似文献   

19.
Kinetics and mechanism of nitrate ion reduction on Pt(1 1 1) and Cu-modified Pt(1 1 1) electrodes have been studied by means of cyclic voltammetry, potentiostatic current transient technique and in situ FTIRS in solutions of perchloric and sulphuric acids to elucidate the role of the background anion. Modification of platinum surface with copper adatoms or small amount of 3D-Cu crystallites was performed using potential cycling between 0.05 and 0.3 V in solutions with low concentration of copper ions, this allowed us to vary coverage θCu smoothly. Following desorption of copper during the potential sweep from 0.3 to 1.0 V allowed us to estimate actual coverage of Pt surface with Cu adatoms. Another manner of the modification was also applied: copper was electrochemically deposited at several constant potentials in solutions containing 10−5 or 10−4 M Cu2+ and 5 mM NaNO3 with registration of current transients of copper deposition and nitrate reduction.It has been found that nitrate reduction at the Pt(1 1 1) surface modified by copper adatoms in sulphuric acid solutions is hindered as compared to pure platinum due to induced sulphate adsorption at E < 0.3 V. Sulphate blocks the adsorption sites on the platinum surface and/or islands of epitaxial Cu(1 × 1) monolayer thus hindering the adsorption of nitrate anions and their reduction. The extent of inhibition weakly depends on the copper adatom coverage. Deposition of a small amount of bulk copper does not affect noticeably the rate of nitrate reduction.Nitrate reduction on copper-modified Pt(1 1 1) electrodes in perchloric acid solutions occurs much faster as compared to pure platinum. The steady-state currents are higher by 4 and 2 orders of magnitude at the potentials of 0.12 and 0.3 V, respectively. The catalytic effect of copper adatoms is largely caused by the facilitation of nitrate adsorption on the platinum surface near Cuad and/or on the islands of the Cu(1 × 1) monolayer (induced nitrate adsorption).Hydrogen adatoms block the adsorption sites on platinum for NO3 anion adsorption and inhibit reactions of nitrate reduction even at moderate surface coverage.The products of nitrate reduction in sulphuric and perchloric acids are essentially the same (NO and ammonia) irrespective of the presence or absence of Cu on the platinum surface.  相似文献   

20.
The inhibition effect of Carboxymethylchitosan (CMCT), Cu2+, and CMCT + Cu2+ mixture on the corrosion of mild steel in 1 M HCl has been investigated using gravimetric and electrochemical techniques. CMCT + Cu2+ mixture acts much more effectively than the inhibiting action of each additive separately. In addition, higher efficiency is achieved for the mixture of 20 mg L−1 CMCT + 10−4 M Cu2+. The efficiency of the optimal mixture increases with the temperature in the range 298-353 K. Activation energy of corrosion reaction in the presence of the optimal mixture of the inhibitors is much lower than that exhibited in 1 M HCl solution. The inhibition mechanism proposed in this paper is based on the results of conductometric investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号