首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 578 毫秒
1.
翟玉玲  王江  李龙  马明琰  姚沛滔 《化工进展》2019,38(11):4865-4872
采用两步法制备体积分数为0.5%和1.0%的Al2O3/水纳米流体,研究20nm和50nm Al2O3纳米粒子的混合比对热导率和黏度的影响,并用c μ/c λ和Mo数来评价其综合传热效果,判断是否适用于实际传热过程。实验结果表明,有效热导率和相对黏度受团聚体尺寸影响较大。在体积分数为1.0%和混合比为50∶50时有效热导率的增幅最大,而混合比为(40∶60)~(60∶40)之间,相对黏度最低。这是因为此时团聚体的尺寸小,相应地沉淀速度慢,说明其分散性较好,形成局部粒子富集区,即“50nm固体粒子-20nm固体粒子-液体分子”的界面层,能产生高导热渗透通道及低热阻区,使热导率增大。在层流时,该纳米流体适用于实际传热过程中的范围为:体积分数0.5%和1.0%,混合比40∶60和50∶50,温度25~50℃。在紊流时,体积分数为0.5%和温度高于40℃时,混合比范围为(40∶60)~(60∶40)才适合使用此纳米流体。  相似文献   

2.
刘妮  洪春芳  柳秀婷 《化工学报》2017,68(9):3404-3408
试验研究了不同种类(Al2O3、Cu、SiO2)、不同质量分数(0.05%、0.1%、0.15%)及不同粒径(10、30、50 nm)的纳米粒子对CO2水合物热导率的影响。结果表明温度为-5~5℃时,纯CO2水合物热导率为0.553~0.5861 W·m-1·K-1,具有玻璃体的变化特性。分散剂SDBS的加入,可改善CO2水合物-纳米粒子体系的导热性能。在相同的质量分数和粒径下,纳米Cu粒子对CO2水合物热导率的增强作用最好,但综合考虑水合物生成特性和溶液悬浮稳定性,选用纳米Al2O3粒子较合适。Al2O3粒子粒径越小,水合物热导率越大,15 nm比50 nm纳米粒子体系中CO2水合物热导率的增长率平均提高了12.7%。此外,CO2水合物热导率随Al2O3粒子质量分数的增大而增大,质量分数由0.05%增加到0.15%时,水合物热导率的增长率由4.2%提高到8.2%。  相似文献   

3.
乙二醇基纳米流体黏度的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
周登青  吴慧英 《化工学报》2014,65(6):2021-2026
实验研究了3种乙二醇基纳米流体(Al2O3-EG、ZnO-EG、CuO-EG)在不同质量分数(0.5%/3.0%/5.0%/7.0%)下的相对黏度随温度的变化规律,实验所用乙二醇基纳米流体采用两步法配制获得。结果表明:在30~60℃温度范围内乙二醇基纳米流体的相对黏度同温度之间并无较强的函数关系(单调递增或递减);但在质量分数较高时,3种乙二醇基纳米流体的相对黏度随温度的变化会出现波动,且以非球形颗粒的ZnO乙二醇基纳米流体的波动最为显著;乙二醇基纳米流体的相对黏度均随纳米颗粒体积分数的增大而增大,其中CuO乙二醇基纳米流体相对黏度的增长速度最快,Al2O3乙二醇基纳米流体的增长速度最慢。最后比较分析了文献中相对黏度预测公式与本文实验数据的相符程度。  相似文献   

4.
三角形微通道内纳米流体流动与换热特性   总被引:2,自引:2,他引:0       下载免费PDF全文
刘冉  夏国栋  杜墨 《化工学报》2016,67(12):4936-4943
以去离子水为基液,通过两步法制备出粒子体积分数为0.1%的SiO2、Al2O3、TiO2纳米流体,并分别在流体内添加一定量的表面活性剂以提高其稳定性。利用紫外分光光度计和热物性分析仪,对3种纳米流体稳定性和热导率进行测试。此外,为研究纳米流体在三角形微通道内的流动与换热特性,利用红外热像仪观察通道底面温度分布。结果表明,表面活性剂会对纳米流体吸光度产生影响,且粒子会随着时间的增加逐渐团聚。纳米颗粒的添加可有效提高工质的热导率并强化对流换热,微通道底面温度明显降低,且均温性得到改善。3种纳米流体中,TiO2纳米流体呈现出更加良好的导热和换热性能。  相似文献   

5.
空调用纳米有机复合相变蓄冷材料制备与热物性   总被引:2,自引:2,他引:0       下载免费PDF全文
武卫东  唐恒博  苗朋柯  张华 《化工学报》2015,66(3):1208-1214
针对目前空调用有机相变蓄冷材料热导率低的问题,将具有高导热性的纳米材料(MWNTs、Al2O3、Fe2O3)添加到所开发制备的二元复合有机蓄冷材料(质量比73.7:26.3的辛酸/肉豆蔻醇)中,从纳米材料的种类和浓度两方面,研究其对复合有机蓄冷材料热物性的影响。实验发现:对于MWNTs、Al2O3、Fe2O3 3种纳米材料,当其质量分数分别小于0.3%、0.4%、0.8%时,对应纳米复合材料热导率随纳米材料浓度的增加幅度较为明显;与原二元复合有机相变蓄冷材料相比,添加0.3%的MWNTs,热导率提高26.3%;添加0.4%的Al2O3,热导率提高13.1%;添加0.8%的Fe2O3,热导率提高32.1%;当在一定纳米材料质量分数(如0.7%)下,加入纳米颗粒的复合材料导热性能效果依次为Fe2O3>MWNTs>Al2O3。不同纳米粒子的添加对原蓄冷材料的相变温度和相变潜热影响很小,相变温度变化波动最大为0.4℃,相变潜热变化波动范围最大为1.4%。  相似文献   

6.
以水-乙二醇为基液,通过两步法制备了质量分数为0.1%的γ-Al2O3纳米流体。考察了乙二醇体积分数、分散剂质量分数及种类、超声时间对纳米流体稳定性的影响。结果表明,乙二醇体积分数为35%时更适用于水-乙二醇基纳米流体的制备;质量分数为0.2%的阿拉伯树胶(GA)可有效提高γ-Al2O3纳米颗粒在水-乙二醇基液中的分散稳定性;超声30 min即可改善纳米流体的稳定性。最后评价了纳米流体的热物性,当与基液水浴加热到60℃时,水-乙二醇基γ-Al2O3纳米流体的导热性能提升幅度最大,为基液的1.35倍;在20~60℃加热过程中,Al2O3乙二醇基纳米流体黏度最低达0.97 mPa·s,所制备的纳米流体可适合用于流动换热。  相似文献   

7.
为了探究管内混合纳米流体单相对流传热性能,实验对比研究了雷诺数为1040~7086范围内体积分数为0.02%的Al2O3-CuO/水(W)混合纳米流体及其相应的一元纳米流体的流动与传热特性。结果表明,纳米颗粒的添加导致在过渡区雷诺数范围提前,在层流范围(10402O3/W和Al2O3-CuO/W纳米流体的Nu数与去离子水相比分别最大增加了32.09%和38.38%;而CuO/W纳米流体由于团聚体尺寸大,流体向前驱动力不足以克服自重易沉积于管内壁,传热效果反而比水差。在紊流范围(40732O3/W和Al2O3-...  相似文献   

8.
娄江峰  张华  王瑞祥 《化工进展》2015,34(2):495-499
采用两步法,以聚乙烯吡咯烷酮(PVP)为表面活性剂,制备了不同种类的纳米冷冻机油并对其分散稳定性进行了实验研究。采用Hot Disk热常数分析仪,测量了40℃下纳米冷冻机油(纳米材料为TiO2、Al2O3、Fe2O3、石墨和碳纳米管,体积分数为0.05%、0.1%、0.2%、0.5%、1%和2%)的热导率,分析研究了颗粒体积分数、粒径、材质以及表面活性剂等因素的影响。结果表明:纳米冷冻机油的热导率随着颗粒体积分数的提高而增大;相同体积分数下随着颗粒粒径的增大而减小,而相同粒径下又随着颗粒材质热导率的提高而增大;同时分散稳定性优的纳米冷冻机油热导率较高。基于纳米粒子的体积分数、粒径、团聚理论和布朗运动开发了纳米冷冻机油热导率预测模型,并与实验数据进行比较,发现预测值与90%的实验数据偏差在±3%以内,平均偏差1.6%。  相似文献   

9.
采用平衡分子动力学方法,探讨了系统温度、纳米颗粒的体积分数及能量因子对水基纳米流体的热导率和黏度的影响。模拟结果表明,随着系统温度的升高,水基纳米流体的热导率增大,而黏度减小;水基纳米流体的热导率及黏度均随着纳米颗粒体积分数的增加而增大,当纳米颗粒的体积分数2%时,水基纳米流体的热导率增幅较小;随着纳米颗粒能量因子的增加,水基纳米流体的热导率增大,而黏度基本不变。  相似文献   

10.
随着电子工业的快速发展,传统换热工质由于其较低的热导率已无法满足越来越高的换热需求。另一方面,传统的换热工质受限其相对较窄的液程范围而无法使用于复杂的温况或特殊的工作条件。低共熔溶剂(DESs)具有与离子液体相似的低饱和蒸气压、高沸点及强稳定性等优势,在传热领域具有巨大的潜力。制备了以尿素/氯化胆碱低共熔溶剂体系为基液,石墨烯、Al2O3、TiO2三种纳米粒子填充的纳米流体,研究了黏度、热导率等热物性与纳米粒子和基液组成之间的关系,并系统地研究了纳米粒子结构对其稳定性的影响。实验结果表明,纳米粒子的填充会在一定程度上增加基液的黏度,其中石墨烯填充的纳米流体的黏度增加最大。此外,石墨烯能显著提高DESs的导热性能,其中6%(质量)石墨烯纳米流体热导率相比基液可增加29.0%。  相似文献   

11.
十二醇-癸酸-纳米粒子复合相变材料传热性能   总被引:4,自引:3,他引:1       下载免费PDF全文
黄艳  章学来 《化工学报》2016,67(6):2271-2276
针对有机相变材料热导率低的共性,以质量比为58.47:41.53的脂肪烃类低共熔有机物十二醇(DA)-癸酸(CA)为基液,添加纳米粒子MWNT、Cu、Al2O3及分散剂SDBS制备出纳米复合相变材料,从纳米粒子种类、添加浓度及超声时间方面研究其对复合有机相变材料热物性的影响。实验发现MWNT、Cu、Al2O3的添加都可以不同程度上提高DA-CA的热导率。当超声时间为50min、纳米粒子浓度均为0.1g·L-1时3种纳米复合材料的热导率大小依次是:MWNT>Al2O3>Cu。最优例:超声分散时间90min,DA-CA+MWNT(0.1g·L-1)+SDBS(0.2g·L-1)的热导率最大,为0.3602W·m-1·K-1,相较DA-CA提高了20.5%,在不影响基液热物性的基础上具有良好的热稳定性。  相似文献   

12.
In this research work, the thermal conductivity and density of alumina/silica(Al_2O_3/SiO_2) in water hybrid nanofluids at different temperatures and volume concentrations have been modeled using the artificial neural networks(ANN). The nanocolloid involved in the study was synthesized by the two-step method and characterized by XRD, TEM, SEM–EDX and zeta potential analysis. The properties of the synthesized nanofluid were measured at various volume concentrations(0.05%, 0.1% and 0.2%) and temperatures(20 to 60 °C). Established on the observational data and ANN, the optimum neural structure was suggested for predicting the thermal conductivity and density of the hybrid nanofluid as a function of temperature and solid volume concentrations. The results indicate that a neural network with 2 hidden layers and 10 neurons have the lowest error and a highest fitting coefficient o thermal conductivity, whereas in the case of density, the structure with 1 hidden layer consisting of 4 neurons proved to be the optimal structure.  相似文献   

13.
In this numerical study, natural flow and heat transfer of nanofluids with Al_2O_3, TiO_2, Cu and CNT nanoparticles in a vertical channel with dimpled fins at Rayleigh number(Ra) of Ra = 3.25 × 10~7 to Ra = 1 × 10~8 are investigated by using the finite volume method. The obtained results revealed that, using CNT in volume fractions of 2% and 4%leads to significant heat transfer and at φ = 6%, using TiO_2 nanoparticles has a great effect on Nu number enhancement. Also, using solid nanoparticles in base fluid causes more uniform heat transfer distribution,especially in areas close to heated surface and by adding more volume fraction in base fluid, temperature level reduces. In general, according to temperature contours, reduction of wall temperature depends on the increase of Ra and volume fraction and the type of solid nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号