首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Supercritical carbon dioxide was employed as the solvent for the functionalization of multi-walled carbon nanotubes (MWCNTs) with an epoxy-capped silane. The silanization protocol was found to be a suitable green alternative to traditional routes that rely on organic solvents for grafting nearly monolayers of silane molecules onto the nanotube surfaces. The addition of silanized MWCNTs to a model epoxy markedly increased its Tg, and measurements of the network cooperativity length scale linked this change to a reduction in polymer segment mobility. Composites filled with low loading levels of both pristine and silanized MWCNTs exhibited significantly higher strain at break and toughness than the neat epoxy, and the greatest improvements were observed at low loading levels. SEM analysis of the composite fracture surfaces revealed that nanotube pullout was the primary failure mechanism in epoxy loaded with pristine MWCNTs while crack bridging predominated in composites containing silanized MWCNTs as the result of strong interfacial bonding with the matrix. The elevated Tg and toughness achieved with small additions of silanized MWCNTs promise to extend the engineering applications of the epoxy resin.  相似文献   

2.
Poly(methacrylic acid) brushes have been prepared utilizing the “grafting from” technique and a living radical synthesis route using a two stage process. Firstly a poly(1-ethoxyethyl methacrylate) brush was synthesized by atom transfer radical polymerization and then thermally decomposed to poly(methacrylic acid). The swelling behaviour of the weak polyacid brush was investigated as a function of pH and salt concentration in aqueous solutions using atomic force microscopy. Force pulling measurements were used to establish the molecular weight and the grafted chain density. The swelling transition was found to be at pH 9; which is significantly different to the pKa (5.5) of untethered poly(methacrylic acid). We attribute this large shift in pKa to the high grafting density of these brushes. This can be explained as a result of the Coulombic repulsion of neighbouring charges. High salt concentrations (0.3 M Na+) also collapse the brush layer. Conversely low salt concentrations cause an increase in the thickness of the brush, a behaviour expected for osmotic brushes.  相似文献   

3.
High performance silanized silica/epoxy nanocomposites were prepared through mixing epoxy, tetraethyl orthosilicate (TEOS), (3-aminopropyl)trimethoxysilane (APTMS) and ammonia solution at 50 °C. This all-in-one “Solvent-Free One-Pot Synthesis” results in nanocomposites with uniform dispersion of oval shaped silica nanoparticles and strong adhesion between silica and epoxy matrix. The influence of the synthesis conditions, such as molar ratio of NH3:TEOS, aging time, curing process and silica content on the thermal mechanical properties of nanocomposites were studied. The silanized silica/epoxy nanocomposite prepared in this study exhibits better thermal mechanical property in comparison with neat epoxy, non-functionalized silica/epoxy and commercialized silica/epoxy systems. The prepared nanocomposite with 3 wt% silanized silica exhibits 20%, 17% and 6% improvements on flexural, tensile and storage modulus over those of neat epoxy, respectively.  相似文献   

4.
Rheological behaviors of multiwalled carbon nanotubes (MWCNTs)/epoxy composites with various MWCNT contents were investigated by using a time sweep and frequency sweep experiment with oscillatory rheometry. The functional groups on the acid-treated MWCNTs were investigated by fourier transfer-infrared spectroscopy (FT-IR). The composites containing acid-treated MWCNTs exhibited faster gel time than pure epoxy resins. The storage (G′) and loss (G″) moduli of the composites showed solid-like behavior owing to interaction between the MWCNTs and the epoxy resins. The 1.0 wt% MWCNT composites had the highest crosslinking activation energy (Ec) due to good dispersion and strong interfacial bonding. These results imply that three-dimensional crosslinking might take place among the hydroxyl group in epoxy resins and the carbonyl or hydroxyl group in acid-treated MWCNTs.  相似文献   

5.
This study describes the influence of triethylenetetramine (TETA) grafting of multi‐walled carbon nanotubes (MWCNTs) on the dispersion state, interfacial interaction, and thermal properties of epoxy nanocomposites. MWCNTs were first treated by a 3:1 (v/v) mixture of concentrated H2SO4/HNO3, and then TETA grafting was performed. Chemically grafted MWCNT/bisphenol‐A glycidol ether epoxy resin/2‐ethyl‐4‐methylimidazole nanocomposites were prepared. TETA grafting could establish the connection of MWCNTs to the epoxy matrix and transform the smooth and nonreactive MWCNT surface into a hybrid material that possesses the characteristics of both MWCNTs and TETA, which facilitates homogeneous dispersion of MWCNTs and improves nanotube‐epoxy interfacial interaction. Therefore, the impact property, glass transition temperature, thermal stability, and thermal conductivity of epoxy nanocomposites are enhanced. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

6.
Stimuli-responsive polymeric materials can adapt to various surrounding environments, converting chemical and biochemical changes into optical, electrical and thermal signals, or changing wettability and adhesion properties upon external stimuli. Herein we report a cotton fabric modified with a thermo-responsive polymer, Poly(N-isopropylacrylamide) (PNIPAAm). 1H solid-state NMR techniques were used to characterize the molecular structure and dynamics of the PNIPAAm brushes, while still grafted on the cotton fabric surfaces, avoiding un-grafting destructive procedures. The results demonstrate that the motion of the grafted PNIPAAm brushes is restricted as the temperature rises above the low critical solution temperature (LCST), which was estimated to be ~34 °C. Variable temperature (VT) experiments were used to investigate the nature of the hydrophilic-hydrophobic transitions of the grafted polymer. The 1H solid-state NMR techniques used proved to be an extremely sensitive and precise way to probe in-situ the LCST transition of the PNIPAAm brushes, while still grafted on cotton fibres.This work presents a high potential synthesis and analysis route towards stimuli-responsive cotton fibres which can find exceptional applications as novel intelligent fabrics for the textile related industries.  相似文献   

7.
Direct functionalized carbon nanotubes (CNTs) were utilized to form the heat flow network for epoxy composites through covalent integration. A method of preparing a fully heat flow network between benzenetricarboxylic acid grafted multi-walled carbon nanotubes (BTC-MWCNTs) and epoxy matrix is described. A Friedel-Crafts modification was used to functionalize MWCNTs effectively and without damaging the MWCNT surface. Raman spectra, X-ray photoelectron spectra and thermogravimetric analysis reveal the characteristics of functionalized MWCNTs. The scanning electron microscope images of the fracture surfaces of the epoxy matrix showed BTC-MWCNTs exhibited higher solubility and compatibility than pristine-MWCNTs. The MWCNTs/epoxy composites were prepared by mixing BTC-MWCNTs and epoxy resin in tetrahydrofuran, followed by a cross-linking reaction with a curing agent. The BTC was grafted onto the MWCNTs, creating a rigid covalent bond between MWCNTs and epoxy resin and forming an effective network for heat flow. The effect of functionalized MWCNTs on the formation of the heat flow network and thermal conductivity was also investigated. The thermal conductivity of composites exhibits a significant improvement from 0.13 to 0.96 W/m K (an increase of 684%) with the addition of a small quantity (1-5 vol%) of BTC-MWCNTs.  相似文献   

8.
Jiangsong Zhang  Ruiying Luo  Caili Yang 《Carbon》2012,50(13):4922-4925
Multi-wall carbon nanotubes (MWCNTs) were chemically functionalized by 3-aminpropyltriethoxysilane and used to increase the strength and stiffness of an adhesive for joining carbon/carbon (C/C) composites. The silanized MWCNTs were uniformly dispersed in the adhesive with a good interface adhesion between them. When the content of silanized MWCNTs in the adhesive was 0.2 wt.%, average shear strength of the C/C joint was 10.40 MPa, which was 31% higher than that of neat C/C composites. The adhesive could be cured at room temperature with good heat-resistant property. The MWCNTs reacted with B4C filler to establish strong B–O–C bond with C/C substrate.  相似文献   

9.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The effect of multi-walled carbon nanotubes (MWCNTs) on cure kinetic parameters of the epoxy/amine/TiO2 (1 wt%) resin system was studied dynamically at four heating rates using DTA. The presence of MWCNT in various amounts (0.1, 0.2, 0.4 and 0.6 wt%) neither retarded nor accelerated the cure reaction of the epoxy/amine/TiO2 system in a considerable extent. Addition of MWCNTs increased the extent of cure of the corresponding nanocomposites, especially at higher contents up to 0.4 wt% MWCNT filled composite. However, increasing the MWCNT content to 0.6 wt% adversely affected the extent of cure due to nanoparticle agglomeration. The fracture surface morphology of the nanocomposites revealed that the cracks deviated on reaching the MWCNTs, while propagating in the polymer matrix. Fractional extent of conversion (α) was calculated using genetic algorithm. Flynn–Wall–Ozawa and Kissinger methods were used to analyze the kinetic parameters. The presence of MWCNTs did not affect the autocatalytic cure mechanism of epoxy/amine/TiO2 resin system and also did not cause any considerable barrier effect on the curing process. Activation energy data fitted well in the cubic polynomial regression equations and the changes of E a with respect to α proved the autocatalytic cure mechanism, being followed by all the MWCNT-containing epoxy-based hybrid nanocomposites.  相似文献   

11.
We reported that well-defined polymer brushes could be prepared efficiently via the grafting-onto approach and the polymer brushes grafted with poly(ethylene oxide) (PEO), poly(ε-caprolactone) (PCL) and mixed PEO/PCL have been obtained. Firstly, poly(glycidyl methacrylate)s, PG100 and PG940, were prepared by controlled radical polymerization and their epoxy groups were reacted with sodium azide to introduce azido groups quantitatively. Then the PG derivatives bearing azido groups, poly(3-azido-2-hydroxypropyl methacrylate)100 (PGA100), were reacted with the alkynyl terminated either PEO (ay-PEO113) or PCL (ay-PCL17) through copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction under mild temperature. At a molar feed ratio of ay-PEO113:azido unit = 1:1, the coupling reaction with ay-PEO113 proceeded nearly quantitatively. At the same feed, the conversion of grafting ay-PCL17 dropped to ca. 80%. Amphiphilic polymer brushes with randomly grafted PEO and PCL branches were also obtained by feeding the mixed ay-PEO and ay-PCL during CuAAC. By coupling ay-PEO113 onto a long backbone PGA940, wormlike PEO brushes with an average length of 140 nm were prepared as demonstrated by AFM. This molecular worm was further labeled with Rhodamine B and then was incubated with liver cancer cells HepG2. Preliminary results indicated that the wormlike brushes could be internalized by the cells easily, suggesting the potential application as advanced vehicles for delivery.  相似文献   

12.
Xiaodong He  Rongguo Wang  Wenbo Liu 《Carbon》2007,45(13):2559-2563
To prepare a carbon nanotube (CNT)/carbon fiber multi-scale reinforcement (MSR), multi-walled carbon nanotubes (MWCNTs) functionalized at the end caps with hexamethylene diamine (HMD) are grafted onto the surfaces of carbon fibers treated with acyl chloride. The surface element concentrations, surface functional groups and morphology of the MSR were examined by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS spectra indicate that sp2 and sp3 carbon atoms are major components in the MSR surface, and the carbon fiber surface structure is not destroyed. There is 17.41% of C-NHx in the surface of the MSR, which suggests that MWCNTs are covalently grafted onto carbon fiber surfaces. SEM shows that the grafted MWCNTs stick to the carbon fiber surface at different angles, and are uniformly distributed along the outer edges of the grooves in the fiber surface. The grafted MWCNTs are 50-200 nm in length and around 14 nm in diameter. It was found that the grafting increases the weight of carbon fiber by 1.2%, which implied that a considerable amount of MWCNTs were grafted onto carbon fiber surfaces.  相似文献   

13.
We present a new type of spherical polymer brush particles that consist of a solid poly(styrene) core (diameter: ca. 100 nm) onto which chains of a bottlebrush polymer have been densely grafted. These systems were prepared in aqueous dispersion by photo emulsion-polymerization using the macromonomer poly(ethylene glycol) methacrylate (PEGMA). In opposite to conventional spherical polyelectrolyte brushes carrying linear polymer chains, the system prepared here has a shell consisting of regularly branched chains (‘nano-tree’-type morphology). The branches consist of oligo(ethylene glycol) chains (n=13) terminated by a hydroxyl group. We demonstrate that these particles can be used as nanoreactors for the generation and immobilization of well-defined silver nanoparticles. Cryo-TEM and FESEM images show that Ag nanoparticles with diameter of ∼7.5±2 nm are homogeneously embedded into the PS-PEGMA brushes. Moreover, the composite particles exhibit an excellent colloidal stability. The catalytic activity is investigated by monitoring the reduction of 4-nitrophenol by NaBH4 in presence of these silver nano-composite particles. The rate constant kapp was found to be strictly proportional to the total surface of the nanoparticles in the system. The study of the temperature dependence shows that the rate constants kapp obtained at different temperatures leads to an activation energy of 62 kJ/mol.  相似文献   

14.
Haiou Yu  Jie Liu  Xin Wen  Yujie Wang  Lu Wang  Jun Zheng  Shaoyun Fu 《Polymer》2011,52(21):4891-4898
Molybdenum-phenolic resin (Mo-PR) was grafted onto the surface of multi-walled carbon nanotubes (MWCNTs) to obtain modified MWCNTs (CNT-PR). Compared to epoxy resin, epoxy resin/CNT-PR nanocomposites showed the improvements in flame retardancy and mechanical properties. Structural characterization showed that the grafted Mo-PR improved the dispersion of MWCNTs in epoxy resin and enhanced the interfacial interaction between CNT-PR and epoxy resin. On the other hand, the grafted Mo-PR could show high char yield during the process of combustion. Thus the flame retardancy of nanocomposites was improved, especially for the heat release rate and total smoke production. Furthermore, the combination of CNT-PR with melamine dramatically promoted the LOI value and the level of UL-94 rating.  相似文献   

15.
A branched random copolymer, poly[(hydroxyethyl acrylate)‐r‐(N‐vinylcarbazole)] (BPHNV), was synthesized through a facile one‐pot free radical polymerization with hydroxyethyl acrylate and N‐vinylcarbazole monomers, using 4‐vinylmethylmercaptan as the chain transfer agent. BPHNV was employed to noncovalently modify multiwall carbon nanotubes (MWCNTs) by π–π interaction. The as‐modified MWCNTs were then incorporated into epoxy resin to improve the thermal conductivity and mechanical properties of epoxy thermosets. The results suggest that, due to both the conjugation structure and the epoxy‐philic component, BPHNV could form a polymer layer on the wall of MWCNTs and inhibit entanglement, helping the uniform dispersion of MWCNTs in epoxy matrix. Owing to the unprecedented thermal conductivity of MWCNTs and the enhancement in the interfacial interaction between fillers and matrix, the thermal conductivity of epoxy/MWCNTs/BPHNV composites increases by 78% at extremely low filler loadings, while the electrical resistivity is still maintained on account of the insulating polymer layer. Meanwhile, the mechanical properties and glass transition temperature (Tg) of the thermosets are elevated effectively, with no significant decrease occurring to the modulus. The addition of as little as 0.1 wt% of MWCNTs decorated with 1.0 wt% of BPHNV to an epoxy matrix affords a great increase of 130% in impact strength for the epoxy thermosets, as well as an increase of over 13 °C in Tg. © 2018 Society of Chemical Industry  相似文献   

16.
We prepared the novel fluorescent polymer latex particles which can change their fluorescence intensity in response to the increasing NaCl concentration in water. Core polymer latex particles were synthesized by emulsifier-free emulsion polymerization of styrene and 2-(2-chloroisobutyroyloxy)ethyl methacrylate. Hydrophilic polymer chains containing epoxy groups were grafted from the core particles by surface-initiated atom transfer radical copolymerization of methoxy polyethyleneglycol methacrylate (MEOxMA, x = 4 or 9) and glycidyl methacrylate in aqueous media. After azidation of epoxy groups in graft chains, a water-soluble fluorescent dansyl derivative was successfully coupled with the graft chains by copper-catalyzed azide-alkyne cycloaddition in aqueous media. The wavelength of maximum fluorescence intensity of polymer particles carrying graft chains with longer PEG side chains (x = 9) was slightly blue-shifted (7 nm) and the fluorescence intensity increased (1.35 times) with an increase in NaCl concentration as opposed to polymer particles with shorter PEG chains (x = 4).  相似文献   

17.
We present here the synthesis of spherical polyelectrolyte brushes by photo-emulsion polymerization with a solid polystyrene core (diameter ~ 100 nm) onto which chains of vinylimidazolium-type poly(ionic liquid)s have been densely grafted. The as-synthesized brush particles were employed as nanoreactors for the generation and immobilization of metal nanoparticles. Transmission electron microscopy characterization shows that Au and Pd nanoparticles with diameter of 2.1 ± 0.2 nm and 2.5 ± 0.3 nm are homogeneously embedded inside the PIL brushes, respectively. The study of swelling behavior of the brush particles before and after metal deposition indicates obviously ion-specific effect. The composite particles exhibit a long-term colloidal stability in aqueous solutions as well as in ionic liquids. Catalytic activity of the as-synthesized metal nanocomposite particles is investigated by using the reduction of 4-nitrophenol with NaBH4 as a model reaction, which can be compared directly with reported systems. In addition, it is found that the rate constant kapp of PIL-metal nanocatalyst could be modulated by salt concentration.  相似文献   

18.
Optical tweezers are employed to measure the forces of interaction within single pairs of poly(acrylic acid) (PAA) grafted colloids with an extraordinary resolution of ±0.5 pN. Parameters varied are the concentration and valency of the counterions (KCl, CaCl2) of the surrounding medium as well as its pH. The data are quantitatively described by a recently published model of Jusufi et al. [Colloid Polym Sci 2004; 282:910] for spherical polyelectrolyte brushes which takes into account the entropic effect of the counterions. For the scaling of the brush height a power law is found having an exponent of 0.25 ± 0.02 which ranges between the values expected for spherical and planar brushes. From the model the ionic concentration inside the brush is estimated in reasonable agreement with the literature.  相似文献   

19.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

20.
The effect of carboxyl and fluorine modified multi-wall carbon nanotubes (MWCNTs) on the curing behavior of diglycidyl ether of bisphenol A (DGEBA) epoxy resin was studied using differential scanning calorimetry (DSC), rheology and infrared spectroscopy (IR). Activation energy (Ea) and rate constants (k) obtained from isothermal DSC were the same for the neat resin and fluorinated MWCNT system (47.7 and 47.5 kJ/mol, respectively) whereas samples containing carboxylated MWCNTs exhibited a higher activation energy (61.7 kJ/mol) and lower rate constant. Comparison of the activation energies, rate constants, gelation behavior and vitrification times for all of the samples suggests that the cure mechanisms of the neat resin and fluorinated sample are similar but different from the carboxylated sample. This can be explained by the difference in how the fluorinated nanotubes react with the epoxy resin compared to the carboxylated nanotubes. Although the two systems have different reaction mechanisms, both systems have similar degrees of conversion as calculated from the infrared spectroscopic data, glass transition temperature (Tg), and predictions based on DSC data. This difference in reaction mechanism may be attributed to differences in nanotube dispersion; the fluorinated MWCNT system is more uniformly dispersed in the matrix whereas the more heterogeneously dispersed carboxylated MWCNTs can hinder mobility of the reactive species and disrupt the reaction stoichiometry on the local scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号