首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragment‐based drug discovery has gained a foothold in today's lead identification processes. We present the application of in silico fragment‐based screening for the discovery of novel lead compounds for the metalloendoproteinase thermolysin. We have chosen thermolysin to validate our screening approach as it is a well‐studied enzyme and serves as a model system for other proteases. A protein‐targeted virtual library was designed and screening was carried out using the program AutoDock. Two fragment hits could be identified. For one of them, the crystal structure in complex with thermolysin is presented. This compound was selected for structure‐based optimization of binding affinity and improvement of ligand efficiency, while concomitantly keeping the fragment‐like properties of the initial hit. Redesigning the zinc coordination group revealed a novel class of fragments possessing Ki values as low as 128 μM , thus they provide a good starting point for further hit evolution in a tailored lead design.  相似文献   

2.
Fragment screening performed with 19F NMR spectroscopy is becoming increasingly popular in drug discovery projects. With this approach, libraries of fluorinated fragments are first screened using the direct‐mode format of the assay. The choice of fluorinated motifs present in the library is fundamental in order to ensure a large coverage of chemical space and local environment of fluorine (LEF). Mono‐ and poly‐fluorinated fragments to be included in the libraries for screening are selected from both in‐house and commercial collections, and those that are ad hoc designed and synthesized. Additional fluorinated motifs to be included in the libraries derive from the fragmentation of compounds in development and launched on the market, and compounds contained in other databases (such as Integrity, PDB and ChEMBL). Complex mixtures of highly diverse fluorine motifs can be rapidly screened and deconvoluted in the same NMR tube with a novel on the fly combined procedure for the identification of the active molecule(s). Issues and problems encountered in the design, generation and screening of diverse fragment libraries of fluorinated compounds with 19F NMR spectroscopy are analyzed and technical solutions are provided to overcome them. The versatile screening methodology described here can be efficiently applied in laboratories with limited NMR setup and could potentially lead to the increasing role of 19F NMR in the hit identification and lead optimization phases of drug discovery projects.  相似文献   

3.
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.  相似文献   

4.
The emergence of extensively drug‐resistant strains of Mycobacterium tuberculosis (Mtb) highlights the need for new therapeutics to treat tuberculosis. We are attempting to fast‐track a targeted approach to drug design by generating analogues of a validated hit from molecular library screening that shares its chemical scaffold with a current therapeutic, the anti‐arthritic drug Lobenzarit (LBZ). Our target, anthranilate phosphoribosyltransferase (AnPRT), is an enzyme from the tryptophan biosynthetic pathway in Mtb. A bifurcated hydrogen bond was found to be a key feature of the LBZ‐like chemical scaffold and critical for enzyme inhibition. We have determined crystal structures of compounds in complex with the enzyme that indicate that the bifurcated hydrogen bond assists in orientating compounds in the correct conformation to interact with key residues in the substrate‐binding tunnel of Mtb‐AnPRT. Characterising the inhibitory potency of the hit and its analogues in different ways proved useful, due to the multiple substrates and substrate binding sites of this enzyme. Binding in a site other than the catalytic site was found to be associated with partial inhibition. An analogue, 2‐(2‐5‐methylcarboxyphenylamino)‐3‐methylbenzoic acid, that bound at the catalytic site and caused complete, rather than partial, inhibition of enzyme activity was found. Therefore, we designed and synthesised an extended version of the scaffold on the basis of this observation. The resultant compound, 2,6‐bis‐(2‐carboxyphenylamino)benzoate, is a 40‐fold more potent inhibitor of the enzyme than the original hit and provides direction for further structure‐based drug design.  相似文献   

5.
Pharmacophore searches that include anchors, fragments contributing above average to receptor binding, combined with one-step syntheses are a powerful approach for the fast discovery of novel bioactive molecules. Here, we are presenting a pipeline for the rapid and efficient discovery of aspartyl protease inhibitors. First, we hypothesized that hydrazine could be a multi-valent warhead to interact with the active site Asp carboxylic acids. We incorporated the hydrazine anchor in a multicomponent reaction and created a large virtual library of hydrazine derivatives synthetically accessible in one-step. Next, we performed anchor-based pharmacophore screening of the libraries and resynthesized top-ranked compounds. The inhibitory potency of the molecules was finally assessed by an enzyme activity assay and the binding mode confirmed by several soaked crystal structures supporting the validity of the hypothesis and approach. The herein reported pipeline of tools will be of general value for the rapid generation of receptor binders beyond Asp proteases.  相似文献   

6.
Soluble epoxide hydrolase (sEH) is involved in the regulation of many biological processes by metabolizing the key bioactive lipid mediator, epoxyeicosatrienoic acids. For the development of sEH inhibitors with improved physicochemical properties, we performed both a fragment screening and a high‐throughput screening aiming at an integrated hit evaluation and lead generation. Followed by a joint dose–response analysis to confirm the hits, the identified actives were then effectively triaged by a structure‐based hit‐classification approach to three prioritized series. Two distinct scaffolds were identified as tractable starting points for potential lead chemistry work. The oxoindoline series bind at the right‐hand side of the active‐site pocket with hydrogen bonds to the protein. The 2‐phenylbenzimidazole‐4‐sulfonamide series bind at the central channel with significant induced fit, which has not been previously reported. On the basis of the encouraging initial results, we envision that a new lead series with improved properties could be generated if a vector is found that could merge the cyclohexyl functionality of the oxoindoline series with the trifluoromethyl moiety of the 2‐phenylbenzimidazole‐4‐sulfonamide series.  相似文献   

7.
Structure‐ and ligand‐based virtual‐screening methods (docking, 2D‐ and 3D‐similarity searching) were analysed for their effectiveness in virtual screening against four different targets: angiotensin‐converting enzyme (ACE), cyclooxygenase 2 (COX‐2), thrombin and human immunodeficiency virus 1 (HIV‐1) protease. The relative performance of the tools was compared by examining their ability to recognise known active compounds from a set of actives and nonactives. Furthermore, we investigated whether the application of different virtual‐screening methods in parallel provides complementary or redundant hit lists. Docking was performed with GOLD, Glide, FlexX and Surflex. The obtained docking poses were rescored by using nine different scoring functions in addition to the scoring functions implemented as objective functions in the docking algorithms. Ligand‐based virtual screening was done with ROCS (3D‐similarity searching), Feature Trees and Scitegic Functional Fingerprints (2D‐similarity searching). The results show that structure‐ and ligand‐based virtual‐screening methods provide comparable enrichments in detecting active compounds. Interestingly, the hit lists that are obtained from different virtual‐screening methods are generally highly complementary. These results suggest that a parallel application of different structure‐ and ligand‐based virtual‐screening methods increases the chance of identifying more (and more diverse) active compounds from a virtual‐screening campaign.  相似文献   

8.
The retinoic‐acid‐related orphan receptor γ t (RORγt), as a master regulator of Th17 cell pathology, has become an attractive target for small‐molecule drug discovery for the treatment of Th17‐cell‐related autoimmune diseases. A crystallographic fragment screening was carried out for RORγt using the ligand binding domain. An overall hit rate of 5.5 % was obtained by screening 384 compounds in 96 cocktails. Five distinct hotspots were identified, and four regions of anchoring polar interactions were observed. In addition, significant induced fit was found for the binding of several fragments. Strikingly, a simultaneous binding of three fragments was revealed which presents interesting features including π–π stacking, multiple hydrogen bonds to the protein, and significant induced fit. Overall, the results offer a complete mapping of the ligand binding pocket and provide valuable inspiration in structure‐based design for RORγt lead generation and optimization. The crystallographic screening also resulted in fragment hits that bind at the surface away from the ligand binding pocket. This surface site is near the plausible dimer interface by analogy with other nuclear receptor systems, which can provide initial hints to explore alternative ways to modulate RORγt through protein–protein interactions.  相似文献   

9.
Toll‐like receptors (TLRs) are critical signaling molecules with roles in various severe clinical conditions such as sepsis and rheumatoid arthritis, and have therefore been advocated as promising drug targets for the treatment of these diseases. The aim of this study was to discover small‐molecule antagonists of TLR2 by computer‐aided drug design. This goal poses several challenges due to the lack of available data on TLR2 modulators. To overcome these hurdles we developed a combined structure‐ and ligand‐based virtual screening approach. First, we calculated molecular interaction fields of the TLR2 binding site to derive a structure‐based 3D pharmacophore, which was then used for virtual screening. We then performed a two‐step shape‐ and feature‐based similarity search using known TLR2 ligands as query structures. A selection of virtual screening hits was biologically tested in a cell‐based assay for TLR2 signaling inhibition, leading to the identification of several compounds with antagonistic activity (IC50 values) in the low‐micromolar range.  相似文献   

10.
Apicomplexan parasites encompass several human‐ and animal‐pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin‐dependent kinases (CDKs) are key molecules in cell‐cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK‐like proteins, of which one—E. tenella CDK‐related kinase 2 (EtCRK2)—has already been characterized by gene cloning and expression. 1 By using the CDK‐specific inhibitor flavopiridol in EtCRK2 enzyme assays and schizont maturation assays (SMA), we could chemically validate CDK‐like proteins as potential drug targets. An X‐ray crystal structure of human CDK2 (HsCDK2) served as a template to build protein models of EtCRK2 by comparative homology modeling. Structural differences in the ATP binding site between EtCRK2 and HsCDK2, as well as chicken CDK3, were addressed for the optimization of selective ATP‐competitive inhibitors. Virtual screening and “wet‐bench” high‐throughput screening campaigns on large compound libraries resulted in an initial set of hit compounds. These compounds were further analyzed and characterized, leading to a set of four promising lead compounds for development as EtCRK2 inhibitors.  相似文献   

11.
Fragment‐based drug discovery (FBDD) has evolved into an established approach for “hit” identification. Typically, most applications of FBDD depend on specialised cost‐ and time‐intensive biophysical techniques. The substrate activity screening (SAS) approach has been proposed as a relatively cheap and straightforward alternative for identification of fragments for enzyme inhibitors. We have investigated SAS for the discovery of inhibitors of oncology target urokinase (uPA). Although our results support the key hypotheses of SAS, we also encountered a number of unreported limitations. In response, we propose an efficient modified methodology: “MSAS” (modified substrate activity screening). MSAS circumvents the limitations of SAS and broadens its scope by providing additional fragments and more coherent SAR data. As well as presenting and validating MSAS, this study expands existing SAR knowledge for the S1 pocket of uPA and reports new reversible and irreversible uPA inhibitor scaffolds.  相似文献   

12.
The emergence of resistance to existing classes of antiretroviral drugs underlines the need to find novel human immunodeficiency virus (HIV)‐1 targets for drug discovery. The viral capsid protein (CA) represents one such potential target. Recently, a series of benzodiazepine inhibitors was identified via high‐throughput screening using an in vitro capsid assembly assay (CAA). Here, we demonstrate how a combination of NMR and X‐ray co‐crystallography allowed for the rapid characterization of the early hits from this inhibitor series. Ligand‐based 19F NMR was used to confirm inhibitor binding specificity and reversibility as well as to identify the N‐terminal domain of the capsid (CANTD) as its molecular target. Protein‐based NMR (1H and 15N chemical shift perturbation analysis) identified key residues within the CANTD involved in inhibitor binding, while X‐ray co‐crystallography confirmed the inhibitor binding site and its binding mode. Based on these results, two conformationally restricted cyclic inhibitors were designed to further validate the possible binding modes. These studies were crucial to early hit confirmation and subsequent lead optimization.  相似文献   

13.
A rapid and practical approach for the discovery of new chemical matter for targeting pathogens and diseases is described. Fragment‐based phenotypic lead discovery (FPLD) combines aspects of traditional fragment‐based lead discovery (FBLD), which involves the screening of small‐molecule fragment libraries to target specific proteins, with phenotypic lead discovery (PLD), which typically involves the screening of drug‐like compounds in cell‐based assays. To enable FPLD, a diverse library of fragments was first designed, assembled, and curated. This library of soluble, low‐molecular‐weight compounds was then pooled to expedite screening. Axenic cultures of Leishmania promastigotes were screened, and single hits were then tested for leishmanicidal activity against intracellular amastigote forms in infected murine bone‐marrow‐derived macrophages without evidence of toxicity toward mammalian cells. These studies demonstrate that FPLD can be a rapid and effective means to discover hits that can serve as leads for further medicinal chemistry purposes or as tool compounds for identifying known or novel targets.  相似文献   

14.
With the aim of fuelling open‐source, translational, early‐stage drug discovery activities, the results of the recently completed antimycobacterial phenotypic screening campaign against Mycobacterium bovis BCG with hit confirmation in M. tuberculosis H37Rv were made publicly accessible. A set of 177 potent non‐cytotoxic H37Rv hits was identified and will be made available to maximize the potential impact of the compounds toward a chemical genetics/proteomics exercise, while at the same time providing a plethora of potential starting points for new synthetic lead‐generation activities. Two additional drug‐discovery‐relevant datasets are included: a) a drug‐like property analysis reflecting the latest lead‐like guidelines and b) an early lead‐generation package of the most promising hits within the clusters identified.  相似文献   

15.
A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson–Boltzmann surface area free‐energy calculations for the five ligand–HIV PR complexes suggested a high stability of the systems through hydrogen‐bond interactions between the ligands and the protease's flaps (Ile50/50′), as well as interactions with residues of the active site (Asp25/25′/29/29′/30/30′). Binding‐energy calculations for the three most promising compounds yielded values between ?5 and ?10 kcal mol?1and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding‐energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit‐to‐lead optimization toward improved anti‐HIV drugs.  相似文献   

16.
In academia, compound recycling represents an alternative drug discovery strategy to identify new pharmaceutical targets from a library of chemical compounds available in house. Herein we report the application of a rational target‐based drug‐repurposing approach to find diverse applications for our in‐house collection of compounds. The carbonic anhydrase (CA, EC 4.2.1.1) metalloenzyme superfamily was identified as a potential target of our compounds. The combination of a thoroughly validated docking screening protocol, together with in vitro assays against various CA families and isoforms, allowed us to identify two unprecedented chemotypes as CA inhibitors. The identified compounds have the capacity to preferentially bind pathogenic (bacterial/protozoan) CAs over human isoforms and represent excellent hits for further optimization in hit‐to‐lead campaigns.  相似文献   

17.
A data mining approach is introduced that automatically extracts SAR information from high‐throughput screening data sets and that helps to select active compounds for chemical exploration and hit‐to‐lead projects. SAR pathways are systematically identified consisting of sequences of similar active compounds with gradual increases in potency. Fully enumerated SAR pathway sets are subjected to pathway scoring, filtering, and mining, and pathways with the most significant SAR information content are prioritized. High‐scoring SAR pathways often reveal activity cliffs contained in screening data. Subsets of SAR pathways are analyzed in SAR trees that make it possible to identify microenvironments of significant SAR discontinuity from which hits are preferentially selected. SAR trees of alternative pathways leading to activity cliffs identify key compounds and help to develop chemically intuitive SAR hypotheses.  相似文献   

18.
The methyllysine reader protein Spindlin1 has been implicated in the tumorigenesis of several types of cancer and may be an attractive novel therapeutic target. Small‐molecule inhibitors of Spindlin1 should be valuable as chemical probes as well as potential new therapeutics. We applied an iterative virtual screening campaign, encompassing structure‐ and ligand‐based approaches, to identify potential Spindlin1 inhibitors from databases of commercially available compounds. Our in silico studies coupled with in vitro testing were successful in identifying novel Spindlin1 inhibitors. Several 4‐aminoquinazoline and quinazolinethione derivatives were among the active hit compounds, which indicated that these scaffolds represent promising lead structures for the development of Spindlin1 inhibitors. Subsequent lead optimization studies were hence carried out, and numerous derivatives of both lead scaffolds were synthesized. This resulted in the discovery of novel inhibitors of Spindlin1 and helped explore the structure–activity relationships of these inhibitor series.  相似文献   

19.
20.
Crystallography provides structural information crucial for fragment optimization, however several criteria must be met to screen directly on protein crystals as soakable, well-diffracting specimen must be available. We screened a 96-fragment library against the tRNA-modifying enzyme TGT using crystallography. Eight hits, some with surprising binding poses, were detected. However, the amount of data collection, reduction and refinement is assumed substantial. Therefore, having a reliable cascade of fast and cost-efficient methods available for pre-screening before embarking to elaborate crystallographic screening appears beneficial. This allows filtering of compounds to the most promising hits, available to rapidly progress from hit-to-lead. But how to ensure that this workflow is reliable? To answer this question, we also applied SPR and NMR to the same screening sample to study whether identical hits are retrieved. Upon hit-list comparisons, crystallography shows with NMR and SPR, only one overlapping hit and all three methods shared no common hits. This questions a cascade-type screening protocol at least in the current example. Compared to crystallography, SPR and NMR detected higher percentages of non-active-site binders suggesting the importance of running reporter ligand-based competitive screens in SPR and NMR, a requirement not needed in crystallography. Although not specific, NMR proved a more sensitive method relative to SPR and crystallography, as it picked up the highest numbers of binders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号