首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 531 毫秒
1.
以D50为0.99 μm的微米石墨为原料,采用KMnO4-HNO3-HClO4-HAc氧化插层反应体系制备可膨胀石墨.通过6因素5水平的正交实验,得出了影响反应体系的主要因素是冰乙酸用量、反应温度和硝酸与高氯酸比例.当反应工艺为:m(C)∶m(KMnO4)=1∶0.4,V(HNO3)∶V(HClO4)=1∶1,m(C)∶V(冰乙酸)=1∶1.5,反应温度为45℃,反应时间为110 min时,可以制得最大膨胀体积的可膨胀石墨.  相似文献   

2.
无硫高抗氧化性可膨胀石墨的制备研究   总被引:1,自引:0,他引:1  
用HNO3和KMnO4做氧化剂,H3PO4做辅助插层剂,磷酸盐做浸渍插层剂制备了无S高抗氧化性可膨胀石墨,用正交实验法分析并确定了制备的最佳工艺,得到的可膨胀石墨膨胀倍数达到320mL·g-1,不含S,且高温抗氧化性能得到明显提高.  相似文献   

3.
高倍率可膨胀石墨的制备及表征   总被引:1,自引:0,他引:1  
以天然鳞片石墨为原料,采用HNO3/KMnO4/HClO4/HAc为氧化插层体系制备可膨胀石墨,确定了制备可膨胀石墨的最佳条件:反应时间为30 min,反应温度为40℃,HNO3(mL)∶KMnO4(g)∶HClO4(mL)∶HAc(mL)=2.5∶1.9∶8.0∶3.0的条件下,制得的可膨胀石墨的膨胀容积为500 mL/g。并以XRD、SEM、FTIR等仪器,对可膨胀石墨的结构、形貌、和内部组成等进行了分析和表征。  相似文献   

4.
细鳞片石墨制备无硫膨胀石墨的研究   总被引:2,自引:0,他引:2  
在硝酸、磷酸的混酸和强氧化剂KMnO4作用下,将细鳞片石墨(100目)在室温条件下利用化学氧化法制得了无硫可膨胀石墨。在1000℃的高温下,得到膨胀倍数达300 mL/g的无硫膨胀石墨,这比以前的报道大大提高。采用正交实验找到了最佳工艺条件为C∶HNO3∶H3PO4∶KMnO4(g∶mL∶mL∶g)=1∶4∶12∶0.25,反应时间为100m in,并分析出各因素对膨胀倍数影响的大小依次为:混酸比例、混酸用量、反应时间、高锰酸钾用量。  相似文献   

5.
低硫可膨胀石墨的制备   总被引:18,自引:0,他引:18  
采用乙酸酐为插入剂,H2O2和K2Cr2O7为氧化剂制备低硫可膨胀石墨。最佳实验条件:m(石墨)∶m(乙酸酐)∶m(浓硫酸)∶m(H2O2)∶m(K2Cr2O7)=1∶1 4∶0 5∶0 12∶0 12;反应时间为1h;反应温度为45℃。制备出的可膨胀石墨膨胀后体积达到280mL/g,含硫量w(S)=0 11%。  相似文献   

6.
高倍率低温可膨胀石墨制备的研究   总被引:6,自引:0,他引:6  
本文以HNO3/HBrO3/KMnO4为氧化插层体系制备低温可膨胀石墨,研究了制备低温可膨胀石墨的最佳条件和物料配比,讨论了插层试剂对起始膨胀温度的影响,提出了氧化插层的机理.研究表明:制备低温可膨胀石墨的反应温度为室温(25 ℃);反应时间40 min;石墨、硝酸、溴酸钠、高锰酸钾的最佳质量比为1∶[KG-·2]3∶[KG-·2]0.1∶[KG-·2]0.07,由此方法制得的可膨胀石墨起始膨胀温度为130 ℃,600 ℃时膨胀容积为350 mL/g.  相似文献   

7.
阳黎  张凌燕  邱杨率  王靖 《硅酸盐通报》2019,38(10):3320-332
以马达加斯加提纯石墨为原料,分别以醋酸,硫酸,硝酸,高氯酸,磷酸,高锰酸钾为氧化插层剂,在药剂种类,药剂用量,反应时间,反应温度等条件进行单因素试验寻求以马达加斯加石墨为原料制备可膨胀石墨的最佳条件.得到的最佳条件为:石墨质量(g)∶高氯酸体积(mL)∶磷酸体积(mL)∶高锰酸钾质量(g)=3∶9∶2∶0.3,在50℃下反应30 min.可制得膨胀体积为350 mL·g-1的可膨胀石墨,分级后+0.300 mm石墨可制得膨胀体积为480 mL· g-1的可膨胀石墨.XRD和SEM分析证明确实有含氧酸根(H2PO4-,HPO42-,PO43-和ClO4-)的插入使石墨得以受热膨胀.  相似文献   

8.
徐珊  曹宝月  牛成吉 《硅酸盐通报》2017,36(3):1020-1024
针对传统方法制得的膨胀石墨含硫量高和膨胀容积不稳定的问题,以0.28 mm的鳞片石墨为原料,KMnO4为氧化剂,HClO4和H3PO4为插层剂,经微波炉和马弗炉两种膨胀方式对可膨胀石墨的膨胀容积进行测试,采用正交实验法确定了最佳工艺条件.结果表明:在石墨(g)∶混酸(mL)∶高锰酸钾(g)=1∶4.5 mL(3.6 mL高氯酸∶0.9 mL磷酸)∶0.3,反应温度30 ℃,反应时间60 min,抽滤洗涤至pH值为5~7,80 ℃干燥,于微波炉中高温膨胀,膨胀容积最大,可达350 mL/g.  相似文献   

9.
制备低硫高倍膨胀石墨的正交法研究   总被引:6,自引:0,他引:6  
首次用硝酸(65%)、乙酸酐和硫酸(98%)的混合液与天然鳞片石墨反应制备低硫高倍膨胀石墨。通过正交实验和分析,筛选出最佳制备条件:石墨、硝酸(65%)、乙酸酐(97%)、硫酸(98%)的重量比为1:1.4:1.5:1.5,反应时间为30min,反应温度为25℃。膨胀石墨的含硫量600ppm,膨胀倍数在190以上。  相似文献   

10.
电化学法制膨胀石墨的改进   总被引:3,自引:1,他引:2  
研究了高锰酸钾作氧化媒质无隔膜电解制备可膨胀石墨时 ,高锰酸钾用量、硫酸浓度、膨化温度和膨化时间等因素对石墨膨胀体积的影响。研究表明 :在m(H2 SO4 )∶m(KMnO4 ) =90∶1,液固比为 10∶1,电解时F间为 5h ,80 0℃左右膨化 30s~ 5 0s所得膨胀石墨的膨胀体积可达 2 48mL/g。  相似文献   

11.
采用化学氧化法,以粒径为180 μm的天然鳞片石墨为原料,在混酸(乙酸酐-磷酸-高氯酸)混合固体助氧化剂(高锰酸钾-重铬酸钾)体系下制得无硫可膨胀石墨。确定最佳合成条件为:m(鳞片石墨)∶V(混酸)∶m(高锰酸钾)∶m(重铬酸钾)=1(g)∶4(mL)∶0.1(g)∶0.1(g),50 ℃反应60 min,40 ℃干燥2 h。在此条件下得到初始膨胀温度为 200 ℃的无硫可膨胀石墨,在500 ℃下的最大膨胀体积高达665 mL/g。通过SEM、FT-IR、XRD及TGA测试对鳞片石墨、可膨胀石墨和膨胀石墨进行结构、形貌、官能团分析。结果表明:可膨胀石墨片层间距增大,成功插入高氯酸、磷酸、乙酸酐;且经膨化后,得到纯度较高、孔隙较发达且片层晶体结构未改变的无硫高膨胀体积膨胀石墨。  相似文献   

12.
采用HClO4/H3 PO4/CrO3氧化插层体系制备低温可膨胀石墨,通过对反应物用量、反应温度及反应时间、水洗温度及水洗程度、干燥温度、膨胀温度进行研究,确定了膨胀石墨体积的影响因素.结果表明:反应物m(C)∶m(HClO4)∶m(H3PO4)∶m(CrO3)=1∶3.0∶1.5∶0.8,反应温度45℃,反应时间70...  相似文献   

13.
负载氧化钛的膨胀石墨的制备   总被引:1,自引:0,他引:1  
以高锰酸钾为氧化剂,硫酸、钛酸四丁酯作插入剂,经反应、水洗、干燥、高温膨胀,制备了负载氧化钛的膨胀石墨。通过正交实验确定了高锰酸钾、一定浓度硫酸、钛酸四丁酯与原料石墨的配比;单因素实验考察了高锰酸钾用量、反应时间、反应温度、钛酸四丁酯用量对产品膨胀容积的影响;对各种形式的石墨进行了XRD物相分析及能量散射(EDS)表征。实验确定制备负载氧化钛的膨胀石墨的最佳工艺条件为:液(硫酸):固=3.0:1,KMnO4:C=0.5:1,硫酸浓度为75%,钛酸四丁酯:C=0.2:1,反应温度为45℃,反应时间为60分(均为质量比)。最佳条件下负载氧化钛的膨胀石墨的膨胀容积为260ml/g;EDS证实了钛的存在;XRD物相分析表明,可膨胀石墨中钛以TiO2形式存在,膨胀石墨中钛以TixOy形式存在。  相似文献   

14.
膨胀石墨与活性炭对工业油吸附性的对比研究   总被引:4,自引:0,他引:4  
李冀辉  刘淑芬 《化学世界》2005,46(9):513-515
选用膨胀体积为150、250、350 mL/g的膨胀石墨和活性炭为吸附剂,以汽油、煤油、柴油、真空泵油和汽机油为吸附质,采用重量法测定了吸附剂对吸附质的吸附性能,实验结果表明:膨胀体积为350 mL/g的膨胀石墨对吸附质的吸附量分别为40、47、52、64、70 g,活性炭的吸附量分别为3.02、3.04、3.08、3.1、3.4 g;膨胀石墨的滞留吸附量分别减少至8、10、17、24、30 g,活性炭的滞留吸附量变化不大.对比了不同膨胀体积的膨胀石墨和活性炭对吸附质的吸附性能,膨胀体积越大,吸附量越大.用SEM和TEM对膨胀石墨的形貌进行了表征,探讨了吸附和滞留吸附的机理.  相似文献   

15.
模拟轻质油氧化脱硫研究   总被引:1,自引:0,他引:1  
以KMnO4为氧化剂,考察了KMnO4/HCl体系对模拟轻质油中苯并噻吩(BT)及二苯并噻吩(DBT)的氧化性能。在反应温度为25℃,反应时间为30 min,KMnO4的加入量为0.01 g/mL油,体系pH=0,V(油)∶V(HCl)=3∶4,相转移催化剂四丁基溴化铵(PTC)的加入量为0.002 g/mL油的条件下,二苯并噻吩脱除率为98.5%,苯并噻吩脱除率为86.6%。对DBT氧化反应动力学进行了研究,得出反应的表观活化能Ea为55.23 kJ/mol,指前因子k0为4.88×108。  相似文献   

16.
为提高煤、天然气资源综合利用效率,优化合成气成分,进行了煤与天然气气流床共气化技术研究。介绍了煤与天然气气流床共气化的试验装置及工艺流程,考察了气化温度、压力、水煤浆浓度、CH4与煤比对共气化反应的影响。结果表明,气化温度和CH4与煤比是共气化反应的主要影响因素,较高的气化温度对共气化反应有利,气化温度为1 350℃时,共气化指标较好,有效气体积分数大于90%;随着CH4与煤比的增大,合成气n(H2)/n(CO)增高。CH4与煤比为0.9 m3/kg时,合成气中n(H2)/n(CO)约1.2。根据后续合成工艺要求,通过调节气化温度和CH4与煤比,可获得n(H2)/n(CO)在0.8~2.0的合成气。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号