首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Copolymer of thiophen‐3‐yl acetic acid 4‐pyrrol‐1‐yl phenyl ester (TAPE) with N‐methylpyrrole (NMPy) was synthesized by potentiostatic electrochemical polymerization in acetonitrile–tetrabutylammonium tetrafluoroborate solvent–electrolyte couple. The chemical structures were confirmed via Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and UV–vis spectroscopy. Electrochromic and spectroelectrochemical properties of poly(TAPE‐co‐NMPy) [P(TAPE‐co‐NMPy)] were investigated. Results showed that the copolymer revealed color change between light yellow and green upon doping and dedoping of the copolymer, with a moderate switching time. Furthermore, as an application, dual‐type absorptive/transmissive polymer electrochromic device (ECD) based on poly(TAPE‐co‐NMPy) and poly(3,4‐ethylene dioxythiophene) (PEDOT) have been assembled, where spectroelectrochemistry, switching ability, stability, and optical memory of the ECD were investigated. Results showed that the device exhibited good optical memory and stability with moderate switching time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1988–1994, 2006  相似文献   

2.
A reversible electrochromic effect has been observed for the first time in flame spray pyrolysis (FSP) processed ε‐WO3 thin films without the use of an ion storage layer and an electrolytic layer. The dark coloration that appears upon the application of a voltage in films deposited on top of interdigitated gold electrodes is localized to the low voltage (?) electrode arm and it switches to the opposite arm upon a reversal of the polarity. Raman spectroscopy indicated that the coloration was not due to intercalation. It is argued here that the coloration is driven by the asymmetric ferroelectric properties of the ε‐WO3 crystals and that this electrochromic reversibility is intrinsically coupled with the polarization switching of the device.  相似文献   

3.
Reported are syntheses of several new monomer precursors of cathodically coloring conducting polymers (CPs), based on a propylene dioxythiophene skeleton. These are shown to yield CPs—both as homopolymers and as copolymers—that are nearly “perfectly” matched electrochemically and electrochromically with a set of anodically coloring poly(aromatic amines), for use in dual‐polymer electrochromic lenses. Resulting dual‐polymer electrochromic lenses display very high light/dark contrast (typically up to 70/7% or 50/0.5% Transmission (integrated over visible spectrum, vs. air reference), Haze < 2%, very high cyclability (> 10 K cycles), multiyear shelf life, appealing transparent to dark‐blue‐black transition, and excellent optical memory. Dramatic lowering of switching time, from 8 to < 1 s, is demonstrated using unique applied‐potential algorithm resident on inexpensive Microcontroller chip. Working, practical dual‐polymer electrochromic spectacles are demonstrated with electrochromic lenses retrofitted to spectacles meeting ANSI Z87.1, GL‐PD 10–12 (U.S. military) specifications. These incorporate photosensor, rechargeable Li battery, Microcontroller, allow for automated operation. Ab‐initio‐design spectacles, also conforming to above specifications, are also demonstrated, with components seamlessly hidden within frame. To the best of our knowledge, the electrochromic lenses and sunglasses reported herein represent the best visible‐region electrochromic performance for dual‐polymer CP electrochromic systems to date and the first practical implementation in working sunglasses. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41043.  相似文献   

4.
Two bis‐chalcone derivatives, (2E,6E)‐2,6‐bis[(thiophen‐2‐yl)methylene]cyclohexanone ( C1 ) and (2E,6E)‐2,6‐bis[(furan‐2‐yl)methylene]cyclohexanone ( C2 )‐based electrochromic (EC) nanofibers were produced in the presence of poly(methyl methacrylate) (PMMA) as supporting polymer using the electrospinning technique. The scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy were used to examine morphology and chemical compositions of nanofibers before and after stability test. SEM images of the obtained smooth and bead‐free nanofibers before the stability test showed that both bis‐chalcone derivatives were homogeneously dispersed on the surface of the electrospun nanofibers. Nanofibers of bis‐chalcone derivatives were characterized with Fourier‐transform infrared spectroscopy. The electrochemical and EC properties of these bis‐chalcone derivatives were investigated. The C1 ‐PMMA nanofiber‐based electrochromic device (ECD) showed higher ΔTmax (41.47%) than that of the C2 ‐PMMA nanofiber‐based ECD (4.67%) during coloration/bleaching at 715 nm. The switching times for coloration and bleaching of C1 ‐PMMA nanofiber‐based ECD were found to be 4.42 and 1.12 s, respectively, and the coloration efficiency was 136.18 cm2/C. Repeated cyclic voltammograms and 1000 cycles of chronoamperometric measurements of the bis‐chalcone derivatives indicated that ECDs have long‐term redox stability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46010.  相似文献   

5.
Homopolymer of 1‐4‐di[2,5‐di(2‐thienyl)‐1H‐1‐pyrrolyl]benzene and its copolymer with 3,4‐ethylenedioxythiophene (EDOT) were electrochemically synthesized and characterized. Resulting homopolymer and copolymer films have distinct electrochromic properties. At the neutral state, homopolymer has λmax due to the π‐π* transition as 410 nm and Eg was calculated as 2.03 eV. The resultant copolymer revealed multichromism through the entire visible region, displaying red‐violet, brownish yellow green, and blue colors with the variation of the applied potential. For the copolymer, λmax and Eg were found to be 450 nm and 1.66 eV, respectively. Double potential step chronoamperometry experiment shows that homopolymer and copolymer films have good stability, fast switching times, and high optical contrast in NIR region as 41 and 30%, respectively. Copolymerization with EDOT not only decreases the band gap, Eg, but also enhances the electrochromic properties. Hence, electrochemical copolymerization is considered to be a powerful tool to improve the electrochromic properties of N‐substituted 2,5‐di(2‐thienylpyrrole) derivatives. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
A new conducting polymer was synthesized by electrochemical polymerization of 4‐(2,5‐di‐2‐thiophen‐2‐yl‐pyrrol‐1‐yl)‐phthalonitrile (SNS‐PN). Electrochemical polymerization of SNS‐PN was performed in acetonitrile/0.2M LiClO4 solvent/electrolyte couple. Characterizations of the resulting polymer P(SNS‐PN) were carried out by cyclic voltammetry, UV–vis, and Fourier transform infrared (FTIR) spectroscopic techniques. Spectroelectrochemical studies revealed that P(SNS‐PN) has an electronic band gap of 2.45 eV and exhibits electrochromic behavior. The switching ability of polymer was also monitored and the percentage transmittance change (ΔT%) was found as 24%. It is also found that P(SNS‐PN) is fluorescent and its fluorescence intensity enhances in the presence of cations. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Electrochemical polymerization of 1,6‐bis(2‐thienyl)pyrene (BTP) could be achieved in acetonitrile/dichloromethane (ACN/DCM) (1:1, by volume) solution containing sodium perchlorate (NaClO4) as a supporting electrolyte. The resulting polymer poly(1,6‐bis(2‐thienyl)pyrene) (PBTP) were characterized by cyclic voltammetry, UV–vis spectroscopy, and scanning electron microscopy. The resulting polymeric film has distinct electrochromic properties and exhibits three different colors under various potentials. Moreover, the PBTP film showed reasonable optical contrast (DT %) at 700 nm is found to be 29% and satisfactory response time is measured as 1.3 s. An electrochromic device (ECD) based on PBTP and poly(3,4‐ethylenedioxythiophene) was also constructed and characterized. This ECD has these qualities: quick switching time, reasonable contrast, and good optical memories and redox stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39770.  相似文献   

8.
In this work, two thiazole‐containing monomers N‐(thiazol‐2‐yl)?2‐(thiophen‐3‐yl)acetamide (ThDBTH) and N,N′‐([4,4′‐bithiazole]‐2,2′‐diyl)bis(2‐(thiophen‐3‐yl)acetamide) (Th2DBTH) were synthesized through amidification reaction of 2‐(thiophen‐3‐yl)acetyl chloride with aminothiazole derivatives and characterized by FTIR and 1H and 13C‐NMR. The monomers were subjected to electrochemical polymerization and optoelectronic properties of the resultant conducting polymers were investigated. Additionally, copolymerization of ThDBTH in the presence of thiophene was achieved. PThDBTH, PTh2DBTH, and P(ThDBTH‐Th) exhibited optical band gaps of 2.15, 2.30, and 1.95 eV, respectively. Switching time and optical contrast of the polymers were evaluated via kinetic studies. The P(ThDBTH‐Th) revealed satisfactory switching time and appropriate optical contrast of 1.27 s and 24.97%, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42206.  相似文献   

9.
Low-cost, flexible and thin display technology is becoming an interesting field of research as it can accompany the wide range of sensors being developed. Here, the synthesis of poly(dimethylpropylene-dioxythiophene) (PProDOT-Me2) by combining vapor phase polymerization and screen printing is presented. A multilayer architecture using poly(3,4-ethylenedioxythiophene) (PEDOT) and PProDOT-Me2 to allow for electrochromic switching of PProDOT-Me2, thereby eliminating the need for a supporting transparent conductive (metal oxide) layer is introduced. Furthermore, the technology is adapted to a blended architecture, which removes the additional processing steps and results in improved color contrast (∆E* > 25). This blend architecture is extended to other conductive polymers, such as PEDOT and polypyrrole (PPy), to highlight the ability of the technique to adjust the color of all-printed electrochromic displays. As a result, a green color is obtained when combining the blue and yellow states of PEDOT and PPy, respectively. This technology has the potential to pave the way for all-printed multicolored electrochromic displays for further utilization in printed electronic systems in various Internet of Things applications.  相似文献   

10.
We report the first well‐controlled room temperature anionic polymerization of 2‐vinylnaphthalene (2‐VNP), using alkyllithium (RLi) initiators. The nucleophilicity and solubility of the RLi as well as that of the 2‐vinylnaphthalenyllithium (VNPLi) and poly(2‐vinylnaphthalenyl)lithium (PVNPLi) propagating species were found to be very important factors in this reaction. An initiator system composed of n‐butyllithium (n‐BuLi) with tetrahydrofuran (THF) in 1,2,3,4‐tetrahydronaphthalene (THN) was determined to be the most effective of the various systems examined. The n‐BuLi/THF complex initiates polymerization and the resulting VNPLi/THF and PVNPLi/THF complexes act as propagating species at room temperature. These species offer adequate nucleophilicity and stability without promoting side reactions. As a result, rapid anionic polymerization was achieved. Various poly(2‐VNP) products with well‐defined polymeric chain structures were synthesized by this process at room temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41901.  相似文献   

11.
A high cycling stability material and an additive manufacturing method are reported for the fabrication of solid electrochromic devices. The poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate)/multi‐walled carbon nanotube (PEDOT:PSS/MWCNT) nanocomposites were synthesized via in situ polymerization. A carboxymethyl cellulose gel was used as the ink vehicle for screen printing. The electrochromic (EC) performance of films patterned by screen printing was also examined. The results of characterization indicate that strong interfacial interactions occurred between PEDOT:PSS and the MWCNTs and the MWCNTs formed a network in these conducting polymers film, so the composite was more conductive than pure PEDOT:PSS. Devices containing PEDOT:PSS/MWCNTs were more stable after 1000 cycles, exhibited higher rate of ion exchange and faster increases in current. The composite containing 0.3 wt % MWCNTs also had a 23% higher color contrast (ΔE*) than pure PEDOT:PSS at 2.5 V applied voltages. The EC inks with well printability not only can be used to print large area films, but also can print fine lines and pixel‐type dots in displays. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45943.  相似文献   

12.
The chemical oxidative polymerization and electrochemical polymerization of 3-aminobenzenesulfonic acid with aromatic amines have been carried out in p-toluenesulfonic acid which acts as a supporting electrolyte as well as an external dopant. The presence of –SO3H groups in the ABSA co-monomer allows the copolymer to acquire intrinsic protonic doping ability. The electrochemically synthesized polymers and copolymers have been characterized by cyclic voltammetry for analyzing the growth of copolymers and chronoamperometry studies for their applications to the electrochromic devices. In addition to construction of electrochromic devices (ECDs), the electrochromic properties of the polymer films were further investigated. Electrochromic switching stability of the devices was estimated from switching times between their oxidized and reduced states, which indicates that the homopolymers and copolymer can be used for promising electrochromic devices. Chemically synthesized copolymers were also characterized using various techniques like Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy and electrical conductivity at room temperature.  相似文献   

13.
Thiophene functionalized polystyrene samples (TFPS) were synthesized by atom transfer radical polymerization (ATRP) of styrene, followed by Suzuki coupling with 3‐thiophene (Th) boronic acid. Conducting graft polymer of TFPS with thiophene was achieved at 1.5 V in tetrabutylammonium tetrafluoroborate/dichloromethane (TBAFB/DM) by electrochemical methods. Spectroelectrochemical analysis of the resulting copolymers [P(TFPS‐co‐Th)] reflected electronic transitions at 449, 721 and 880 nm, revealing π ? π* transition, polaron and bipolaron band formation, respectively. We also successfully established the utilization of dual type complementary colored polymer electrochromic devices using P(TFPS‐co‐Th)/poly(3,4‐ethylenedioxythiophene (PEDOT) in sandwich configuration. The switching ability, stability and optical memory of the electrochromic device were investigated by UV–visible spectrophotometry and cyclic voltammetry. Device switches between brown and blue color with a switching time of 1.3 s were prepared with optical contrast (%ΔT) of 25 %. Copyright © 2005 Society of Chemical Industry  相似文献   

14.
A series of novel polymers (coded as BCT-1 to BCT-6 (BTC is block triphenylamine)) based on N1-(4-aminophenyl)-N1-phenyl benzene-1,4-diamine, pyridine-2,6-dicarboxylic acid, 4,4′-(phenyl azanediyl)dibenzoic acid (PDA), and different diamine compounds were synthesized successfully through a polymer condensation reaction. For comparison, model polymers, BCT–2,6-pyridine dicarboxylic acid (PA) and BCT–PDA, were synthesized as well. The electrochromic properties of the BCTs were determined via an electrochemical workstation and a UV–visible spectrophotometer. Through electrooxidation, the polymer films showed reversible redox processes and steady color changes. In a comparision of the electrochromic characteristics of the BCTs, almost all the novel polymer films showed a better electrochromism stability, a higher electrochromic coloration efficiency (CE), and a more rapid switching time than BCT–PA and BCT–PDA. Among these polymers, BCT-1 exhibited the highest CE of 266.7 cm2/C, and BCT-4 showed the most rapid switching time (color switching time = 3.08 s and bleaching time = 2.01 s). © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47264.  相似文献   

15.
The dibenzyl derivative of poly(3,4‐propylenedioxythiophene) (PProDOT‐Bz2) thin film is deposited onto ITO‐coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT‐Bz2 is carried out by a three‐electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six‐layer structure of PProDOT‐Bz2 electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at λmax (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40717.  相似文献   

16.
A device composed of a poly (N‐isopropylacrylamide)‐based microgel layer sandwiched between two thin gold layers was used as a platform for determining the amount of ethanol in gasoline (octane number of 87). This device, also known as an etalon, has unique optical properties, which depend on the diameter of the microgels that make up the device. We show that the optical properties of the device depend on the concentration of the ethanol in gasoline samples. Specifically, as the reflectance peaks shift to higher wavelength, the visual color of the device changes from green to red up to 12% (v/v) ethanol. We show that the response was consistent from sample to sample and that the devices are reusable at least three times. We went on to show that the response did not depend on the source of the gasoline, and that the etalon's response is specific to ethanol compared to other common solvents found in gasoline. The performance of these devices make them potentially useful for detecting ethanol in gasoline at the time of gasoline purchase, to determine if the gas being purchased has been adulterated. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42106.  相似文献   

17.
This research demonstrated that polymerization of aniline on cellulose produces chiroptically active composites. Polymerization of aniline in the presence of cotton fibers consisting of chiral cellulose are performed to prepare a polyaniline (PANI)/cotton composite. The polymerization is conducted at the cotton interface. The resultant PANI/cotton composite shows chiroptical activity elucidated with diffuse reflectance circular dichroism. In this reaction, textile‐surface interfacial asymmetric polymerization is performed with imprinting of chiral structure from the cotton as a natural chiroptically active polymer to the PANI. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41118.  相似文献   

18.
Dual‐type polymer electrochromic devices based on [(3‐thienyl)methylmethacrylate]‐co‐[p‐vinyl benzyloxy poly(ethylene oxide)]/polythiophene and thiophene‐capped poly(ethylene oxide)/polythiophene and ethylene dioxythiophene were constructed via electropolymerization. Spectroelectrochemistry, switching ability and stability of the devices were investigated using UV‐visible spectrophotometry and cyclic voltammetry. These devices exhibit low switching voltages and short switching times with reasonable switching stability under atmospheric conditions. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
In this study, cellulose triacetate was used as a suitable base polymer for polymer‐blended membranes for ion sensing and separation. Polymer‐blended membranes were prepared with the solvent casting technique in the presence of mixed plasticizer and a metal ion carrier known as an ionophore. 7‐Dodecenyl‐8‐hydroxy‐quinoline and N,N′‐diphenylethyl Kemp's triacid diamide, in addition to the newly synthesized 8‐[N‐acetyl‐O‐(4‐tert‐butyl benzyl)‐L‐tyrosylamino] quinoline, were used as representative examples for ionophores. The membranes were evaluated through the transport of copper and lead ions into 0.1M nitric acid as the receiving phase. The concentrations of the investigated metal ions in both phases were assayed by atomic absorption spectrometry. From this study, it can be concluded that the efficiency of the membrane, either as an ion‐transporting or as an ion‐extracting condidate, is controlled by the amount of the immobilized ionophore, the immobilization time within the membrane matrix while in contact with the receiving phase, the nature of the ionophore–metal ion complex, and so on. The carrier‐mediated transport mechanism was also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2008–2015, 2001  相似文献   

20.
Ultrahigh‐molecular‐weight polyethylene (UHMWPE)/polar polyethylene (PE) composites were blended in one nascent particle by in situ polymerization with a hybrid catalyst. Polystyrene‐coated SiO2 particles were used to support the hybrid catalyst. Fe(acac)3/2,6‐bis[1‐(2‐isopropylanilinoethyl)] was supported on SiO2 for the synthesis of UHMWPE, whereas [PhN?C(CH3)CH?C(Ph)O]VCl2 was immobilized on a polystyrene layer to prepare a copolymer of ethylene and 10‐undecen‐1‐ol (polar PE). Importantly, the core part of the supports (the polystyrene layer) exhibited pronounced transfer resistance to 10‐undecen‐1‐ol; this provided an opportunity to keep the inside iron active sites away from the poisoning of 10‐undecen‐1‐ol. Therefore, UHMWPE was simultaneously synthesized with polar PE by in situ polymerization. Interestingly, the morphological results show that UHMWPE and the polar PE were successfully blended in one nascent polymer. This improved the miscibility of the composites, where most of the chains were difficult to crystallize because of the strong interactions between the PE chains and polar chains. The blends showed an extremely low crystallinity, that is, 9.9%. Finally, the hydrophilic properties of the polymer composites were examined. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46652.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号