首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
琥珀酸(succinic acid)是一种四碳二羧酸,在食品、医药、塑料和化工行业具有广泛的应用。目前,微生物法生产琥珀酸存在得率低、生产强度低、副产物积累等问题。为此,本研究通过复合诱变(ARTP和60Co-γ射线)筛选到一株耐高渗突变株FMME-N-2,其琥珀酸得率为0.70g/g葡萄糖,同时积累18.8g/L乳酸、7.6g/L甲酸和17.3g/L乙酸。为了提高琥珀酸得率,通过敲除乳酸脱氢酶基因(ldhA)、丙酮酸-甲酸裂解酶-甲酸转运蛋白基因(pflB-focA)、磷酸转乙酰基基因(pta)、丙酸激酶基因(tdcD)和a-酮丁酸甲酸酯裂解酶基因(tdcE),阻断冗余代谢支路减少副产物积累,获得工程菌株FMME-N-13,琥珀酸得率增加到0.92g/g葡萄糖,同时副产物大大降低,积累0.6g/L乳酸、3.6g/L甲酸和12.3g/L乙酸。同时,通过调控RBS强度组合优化来自产琥珀酸放线杆菌的磷酸烯醇式丙酮酸羧激酶基因(AsPCK)和来自博伊丁假丝酵母的甲酸脱氢酶基因(CbFDH)的表达水平,调控胞内ATP和NADH的浓度,最优工程菌FMME-N-26(FMME-N-13-L-AsPCK-L-CbFDH)的琥珀酸得率增加至1.04g/g葡萄糖,仅积累5.5g/L乙酸;最终,对厌氧阶段葡萄糖浓度进行优化,当葡萄糖浓度控制在0~5g/L时,菌株FMME-N-26的琥珀酸浓度增加到111.9g/L,得率为1.11g/g葡萄糖(理论产率的99%),生产强度为1.76g/L/h,为琥珀酸的工业化生产奠定了良好的基础。  相似文献   

2.
Actinobacillus succinogenes NJ113产丁二酸过程中的底物抑制   总被引:1,自引:0,他引:1  
研究了分批发酵条件下以葡萄糖作为底物对产琥珀酸放线杆菌Actinobacillus succinogene NJ113发酵产丁二酸的影响,针对底物抑制现象,采用变速补料控制发酵罐中葡萄糖浓度的补料分批发酵方式.结果表明,发酵过程中将葡萄糖浓度控制在0~10g/L,以Na2CO3作为pH调节剂,经26h厌氧发酵,消耗60g/L葡萄糖,能积累45.27g/L丁二酸,得率达75.45%,生产强度为1.74g/(L·h),比初始葡萄糖浓度为60g/L的分批发酵周期缩短了18.75%,主产物丁二酸的得率和生产强度分别提高了5.44%和31.82%,副产物甲酸产量有所减少,而乙酸产量有所增加.通过代谢网络中相关酶的酶活分析,解析了补料过程中主副产物的分布.  相似文献   

3.
考察E.coli JM001及其重组菌株E.coli JM002生物发酵生产丁二酸的性能。E.coli JM001在两阶段发酵产丁二酸过程中通过在有氧培养阶段添加乙酸钠,即可提高丁二酸的生产能力,厌氧阶段的丁二酸收率可达84%,但会有较多的副产物乙酸和丙酮酸积累。以E.coli JM001为出发菌株,敲除其磷酸烯醇式丙酮酸羧化酶(PPC)并导入来源于枯草芽孢杆菌的磷酸烯醇式丙酮酸羧化激酶(PCK)基因,构建了重组菌株E.coli JM002,该重组菌株在两阶段发酵的有氧培养过程中不需添加乙酸钠,转厌氧后菌株也具有转化葡萄糖合成丁二酸的能力,丁二酸收率可达86%,副产物积累很少。  相似文献   

4.
周航  于慧敏  沈忠耀 《现代化工》2003,23(Z1):198-201
摇瓶培养结果表明,重组大肠杆菌E.coli VG1(pTU14)可以在培养基中加入丙酸的环境下合成聚(3-羟基丁酸-3-羟基戊酸酯)(PHBV),且丙酸的初浓度和加入时间是影响细菌生长、PHBV积累和产品中HV分率的关键因素.在摇瓶补料分批培养中,通过监测细胞生长、PHBV积累和丙酸的消耗过程,优化并确定了丙酸的补料策略.E.coli VG1(pTU14)经过48 h的摇瓶补料分批培养,菌体干重、PHBV浓度、PHBV含量和HV摩尔分率,分别达到16.6g/L、13.1g/L、78.7%和7.2%.PHBV相对于葡萄糖的得率、HV相对于丙酸的得率和PHBV的产率分别为0.327g/g、0.343g/g和0.273g/L/h.  相似文献   

5.
优化了用不透明红球菌FMME1-41所产谷氨酸氧化酶(LGOX)转化L-谷氨酸产α-酮戊二酸(α-KG)的工艺条件.结果表明,最佳发酵培养基为酵母粉6 g/L,大豆蛋白胨2 g/L,(NH_4)_2SO_4 0.8 g/L,葡萄糖25 g/L,KH_2PO_4 3 g/L,MgSO_4 0.6 g/L,MnSO_4 0.3g/L,L-谷氨酸2.5 g/L,在其中发酵30 h,LGOX酶活达6.12 U/mL;在7.5 L发酵罐中优化发酵放大和补料策略,发酵40 h后LGOX酶活达21.5 U/mL;在2 L发酵罐中转化L-谷氨酸生产α-KG,产量达92.0 g/L,摩尔转化率为92.6%,生产强度为9.2 g/(L·h).  相似文献   

6.
以糠醛渣为原料,直接同步糖化发酵(SSF)生产乙醇,并与水洗糠醛渣生产乙醇进行对比。通过考察不同条件来优化同步糖化发酵生产工艺条件,并分析表征了SSF过程中乙醇浓度和副产物浓度变化。优化条件为:糠醛渣底物质量分数10%,纤维素酶用量12%,无患子皂素质量浓度0.5g/L,酵母接种量7g/L,同步糖化发酵乙醇得率达到其理论得率的93.1%。与水洗糠醛渣相比,糠醛渣直接SSF过程可将原料吸附的5.50%葡萄糖部分转化为乙醇。水洗糠醛渣SSF生产乙醇所产生的副产物要远低于糠醛渣直接生产所产生的副产物,添加无患子皂素可有效抑制糠醛渣同步糖化发酵过程中副产物的产生。  相似文献   

7.
对产琥珀酸放线杆菌(Actinobacillus succinogenes)GXAS137发酵木糖母液产丁二酸的条件进行优化,探索利用废弃木糖母液合成高附加值丁二酸的可行性。首先通过Plackett-Burman实验设计确定影响丁二酸发酵的显著因子,然后采用最陡爬坡实验逼近各显著因子的最优区域,最后通过Box-Behnken实验设计确定各因子的最优水平。影响木糖母液发酵产丁二酸的显著因子及最优浓度分别为:木糖母液64.75g/L,玉米浆15.71g/L,碱式碳酸镁46.39g/L。在最优发酵培养条件下,丁二酸产量达到38.01g/L,比优化前提高了20.7%,与模型预测值(38.41g/L)基本一致。进一步利用2L发酵罐进行了放大试验,发酵72h丁二酸产量最高可达48.99g/L,较厌氧瓶发酵提高了28.9%,丁二酸得率为0.80g/g总糖。结果表明,采用低价的木糖母液作为底物,可为未来低成本、高效产业化生产丁二酸奠定坚实的基础。  相似文献   

8.
对表达了高效醛脱氢酶的重组肺炎克雷伯氏菌以甘油为底物生产3-羟基丙酸和1,3-丙二醇的过程进行优化,将发酵过程中补料阶段甘油浓度分别控制为0~10, 10~20, 20~30 g/L,并分3次间歇性补加甘油. 结果表明,发酵过程中补料阶段控制甘油浓度在20~30 g/L,发酵26 h得到47.20 g/L 3-羟基丙酸和43.90 g/L 1,3-丙二醇;而间歇性补加甘油产物得率最高,发酵26 h时3-羟基丙酸和1,3-丙二醇相对甘油的得率分别为0.35和0.38 mol/mol. 3-羟基丙酸和1,3-丙二醇联产可实现辅因子烟酰胺腺嘌呤二核苷酸的再生平衡,从而提高碳回收率.  相似文献   

9.
在产甘油假丝酵母分批发酵生产甘油的过程中,考察了添加甘氨酸、谷氨酸、天冬酰胺、丙酮酸和a-酮戊二酸等物质对菌体生长、维持代谢、甘油生成及副产物形成的影响. 结果表明,在发酵全过程中,它们对菌体的生长基本没有影响,但能加快葡萄糖的消耗速率、缩短发酵周期、提高甘油得率,从而使甘油的生产强度分别达到1.66, 1.59, 1.61, 1.54和1.68 g/(L×h),比对照分别提高了25.18%, 19.21%, 20.77%, 15.92%和26.32 %;副产物的形成主要发生在快速生长阶段,而此阶段用于菌体生长、维持代谢和甘油合成所消耗的葡萄糖基本没有变化;在稳定生长期,它们可以减少用于菌体生长、维持代谢和形成副产物的葡萄糖消耗量,导致流向甘油合成途径的葡萄糖代谢流增加.  相似文献   

10.
为考察葡萄糖和铜离子盐协同补料发酵对球头三型孢菌产赤藓糖醇的影响,在5L发酵罐中先采用不同浓度的葡萄糖进行分批发酵,然后采用优化的葡萄糖浓度并添加CuSO4·5H2O进行发酵研究。结果表明,初始葡萄糖浓度为300g/L的赤藓糖醇产量最大为44.52g/L,其体积生产速率为0.371g/(L·h)、转化率为0.167g/g。在此浓度葡萄糖的基础上添加30mg/L的CuSO4·5H2O后,赤藓糖醇产量达到49.62g/L,提高了11.5%。进一步控制总糖浓度为300g/L,且初始浓度为200g/L,分别进行单独补糖和协同补糖与铜离子的补料发酵,结果赤藓糖醇产量分别为47.25g/L和55.31g/L,比初始300g/L的葡萄糖分批发酵分别提高了6.1%和24.2%。特别地,协同补糖与CuSO4·5H2O后,赤藓糖还原酶(erythrose reductase,ER)的活性在84h达到最大,为0.152U/mg,比单独补糖时提高了18.8%;通过铜离子盐和葡萄糖的协同补料发酵可显著提高赤藓糖醇的产量,最终使赤藓糖醇产率达到0.461g/(L·h)。  相似文献   

11.
以(NH4)2SO4为底物氮源,采用平板变色圈法从土壤中分离筛选出一株2-酮基-D-葡萄糖酸生产菌株Serratia sp. FMME043,对其碳源、氮源、无机源和摇瓶类型等产酸条件进行优化,确定以(NH4)2SO4为氮源的摇瓶产酸最佳条件为葡萄糖180 g/L, (NH4)2SO4 2.0 g/L, KH2PO4 1 g/L,在初始pH 7.0及750 mL双刺摇瓶装液量10%、培养温度30℃、摇床转速200 r/min条件下发酵48 h,2-酮基-D-葡萄糖酸产量达169.5 g/L,得率为0.87 mol/mol,并在7 L发酵罐中进行了验证.  相似文献   

12.
对地衣芽孢杆菌P-104发酵合成g-PGA的条件(接种时间、接种量和培养基组成等)进行了优化,并在发酵罐中进行了批式发酵实验. 结果表明,该菌可利用合成培养基生产较高浓度超高分子量(大于2500 kDa)的g-PGA,最佳培养基组分为(g/L):葡萄糖 80,谷氨酸钠 70,柠檬酸钠 10, (NH4)2SO4 10, MnSO4 0.15, MgSO4 0.8, K2HPO4 0.6, NaNO3 4. 接种时间与量分别为8 h和3%(j)、初始pH 7.5条件下,37℃下180 r/min摇瓶培养24 h,发酵液中g-PGA浓度可达44.7 g/L,比生产速率为1.49 g/(L×h),是已报道的同类比生产速率的2倍. 采用优化培养基在6.6 L发酵罐中批式发酵培养33 h, g-PGA浓度为32 g/L,比生产速率为0.97 g/(L×h).  相似文献   

13.
豆粕水解液为氮源细菌厌氧流加发酵生产L-乳酸   总被引:9,自引:0,他引:9  
采用细菌厌氧发酵法生产L-乳酸,由实验确定了最佳接种量、发酵温度和pH调节剂,考察了初始葡萄糖浓度对L-乳酸生产的影响,确定初始糖浓度为70~90 g/L时得率、产率、最终生物量分别达到92.68 g/g, 3.17 g/(L×h)和8.5′107 mL-1. 为进一步降低L-乳酸生产成本,以豆粕水解液为氮源代替酵母粉,同时应用流加发酵技术,L-乳酸产量、得率、产率及转化率分别达到155 g/L, 95.5 g/g, 1.64 g/(L×h)和96.9%. 在保证L-乳酸最终浓度的同时可降低生产成本,为进一步工业化奠定了基础.  相似文献   

14.
Candida krusei 的分批培养与补料分批培养生产甘油   总被引:4,自引:0,他引:4  
采用Candida krusei分批发酵生产甘油,因菌体生长形成副产物,甘油总得率仅为0.377g/g。生长阶段改用流加培养,限制葡萄糖的供应,然后补入剩余葡萄糖。这样,菌体对葡萄糖的得率系数和甘油总得率比分批培养分别提高了0.258g/g和0.058g/g,最终甘油浓度提高了10g/L 左右。  相似文献   

15.
在对比研究3和30 L规模发酵罐中T.glabrata生产丙酮酸性能的基础上,在30 L发酵罐中系统优化并研究了氮源、维生素水平及溶氧水平对T.glabrata生产丙酮酸的影响.结果表明,以7g/L尿素作为唯一氮源能促进菌体生长,加快葡萄糖消耗和丙酮酸积累;将硫胺素水平由15 μg/L提高至18 μg/L,菌体干重提高...  相似文献   

16.
少根根霉利用木糖和葡萄糖分步发酵制备富马酸   总被引:5,自引:2,他引:3  
将木糖与葡萄糖分别用于少根根霉种子培养及发酵产富马酸2个阶段,少根根霉利用木糖进行种子培养时,最适木糖浓度为30 g/L,摇瓶最适孢子浓度为(4~6)×105 mL-1,最佳种龄32~40 h,最适接种量为8%(j),在含有100 g/L葡萄糖的产酸发酵培养基中发酵72 h后,富马酸最高浓度达53.51 g/L. 研究结果表明,可以利用木糖替代葡萄糖进行少根根霉的种子培养,分步发酵制备富马酸.  相似文献   

17.
实验研究了重组Klebsiella pneumoniae批式发酵生产1,3-丙二醇过程中辅助碳源蔗糖与葡萄糖对发酵过程的影响,对发酵工艺进行了放大,并对流加策略进行了优化. 结果表明,葡萄糖为发酵生产1,3-丙二醇的辅助碳源优于蔗糖;以重组Klebsiella pneumoniae为菌种,以葡萄糖为辅助碳源,采用指数流加策略,30 L发酵罐中1,3-丙二醇的产量最高达85.2 g/L,产率达0.63 mol/mol,比单纯以甘油为碳源分别提高37.35%和25.00%.  相似文献   

18.
对地衣芽孢杆菌P-104发酵合成γ-PGA的条件(接种时间、接种量和培养基组成等)进行了优化,并在发酵罐中进行了批式发酵实验.结果表明,该菌可利用合成培养基生产较高浓度超高分子量(大于2500 kDa)的γ-PGA,最佳培养基组分为(g/L):葡萄糖80,谷氨酸钠70,柠檬酸钠10,(NH4)2SO4 10,MnSO4 0.15,MgSO4 0.8,K2HPO4 0.6,NaNO34.接种时间与量分别为8h和3%((φ))、初始pH 7.5条件下,37℃下180 r/min摇瓶培养24 h,发酵液中γ-PGA浓度可达44.7 g/L,比生产速率为1.49g/(L·h),是已报道的同类比生产速率的2倍.采用优化培养基在6.6 L发酵罐中批式发酵培养33 h,γ-PGA浓度为32 g/L,比生产速率为0.97 g/(L·h).  相似文献   

19.
E.coli M15 (pQTPL)高效发酵生产酪氨酸酚裂解酶的控制策略   总被引:1,自引:0,他引:1  
在摇瓶和4 L发酵罐上研究了营养和环境条件对重组菌E. coli M15 (pQTPL)分批发酵生产酪氨酸酚裂解酶(TPL)的影响. 在培养基中添加20 g/L葡萄糖和1.0 g/L玉米浆使TPL酶活提高到63.1 U/g(干重). 在此基础上,维持发酵液中溶氧水平为30%,可使菌体浓度在8 h达到4.78 g/L,酶活为54.6 U/g,比对照组(不控制溶氧)分别提高了21%和31.6%. 采用溶氧反馈调节-限制性补料策略,可使菌体浓度提高到31.5 g/L. 采用两阶段温度和pH控制策略,在发酵前8 h控制pH 7.0、温度37℃,8 h 至发酵结束之间控制pH为8.0、温度为30℃,可使重组菌的TPL酶活达到154.4 U/g,并使TPL在细胞中过量表达,实现了高菌体浓度和高TPL酶活的统一.  相似文献   

20.
考察了2种米根霉发酵生产L-乳酸方法对L-乳酸合成的影响,基于动力学分析,优化了米根霉一步发酵合成L-乳酸的策略.结果表明,与传统发酵相比,一步发酵法能极大降低米根霉产酸过程的延滞期,提高生产强度,但产物比生成速率大大低于传统发酵法.最优的一步法合成L-乳酸的策略为孢子浓度10~5个/mL,葡萄糖浓度100 g/L,蛋白胨3.0 g/L,培养24 h后,菌体密度不变,发酵液体积减少50%.该条件下,发酵阶段发酵时间缩短至13 h,乳酸产量、生产强度和糖酸转化率分别为60 g/L,4.62 g/(L·h)和0.8 g/g,比传统发酵的时间(48 h)和生产强度[1.19 g/(L·h)]分别缩短72.9%和提高288%,比生成速率和糖酸转化率未降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号