首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nitride ceramics were pressureless sintered at low temperature using ternary sintering additives (TiO2, MgO and Y2O3), and the effects of sintering aids on thermal conductivity and mechanical properties were studied. TiO2–Y2O3–MgO sintering additives will react with the surface silica present on the silicon nitride particles to form a low melting temperature liquid phase which allows liquid phase sintering to occur and densification of the Si3N4. The highest flexural strength was 791(±20) MPa with 12 wt% additives sintered at 1780°C for 2 hours, comparable to the samples prepared by gas pressure sintering. Fracture toughness of all the specimens was higher than 7.2 MPa·m1/2 as the sintering temperature was increased to 1810°C. Thermal conductivity was improved by prolonging the dwelling time and adopting the annealing process. The highest thermal conductivity of 74 W/(m∙K) was achieved with 9 wt% sintering additives sintered at 1810°C with 4 hours holding followed by postannealing.  相似文献   

2.
《Ceramics International》2022,48(13):18294-18301
Si3N4 ceramics were prepared using novel two-step sintering method by mixing α-Si3N4 as raw material with nanoscale Y2O3–MgO via Y(NO3)3 and Mg(NO3)2 solutions. Si3N4 composite powders with in situ uniformly distributed Y2O3–MgO were obtained through solid–liquid (SL) mixing route. Two-step sintering method consisted of pre-deoxidization at low temperature via volatilization of in situ-formed MgSiO3 and densification at high temperature. Variations in O, Y, and Mg contents in Si3N4–Y2O3–MgO during first sintering step are discussed. O and Mg contents decreased with increasing temperature because SiO2 on Si3N4 surface reacted with MgO to form low-melting-point MgSiO3 compound, which is prone to volatilize at high temperature. By contrast, Y content hardly changed due to high-temperature stability of Y–Si–O–N quaternary compound. In the second sintering step, skeleton body was densified, and the formation of Y2Si3O3N4 secondary phase occurred simultaneously. Two-step sintered Si3N4 ceramics had lower total oxygen content (1.85 wt%) than one-step sintered Si3N4 ceramics (2.51 wt%). Therefore, flexural strength (812 MPa), thermal conductivity (92.1 W/m·K), and fracture toughness (7.6 MPa?m1/2) of Si3N4 ceramics prepared via two-step sintering increased by 28.7%, 16.9%, and 31.6%, respectively, compared with those of one-step sintered Si3N4 ceramics.  相似文献   

3.
Dense Si3N4 ceramics were fabricated by pressureless sintering at a low temperature of 1650°C with a short holding period of 1 h under a nitrogen atmosphere. The role of ternary oxide additives (Y2O3–MgO–Al2O3, Y2O3–MgO–SiO2, Y2O3–MgO–ZrO2) on the phase, microstructure, and mechanical properties of Si3N4 was examined. Only 5 wt.% of Y2O3–MgO–Al2O3 additive was sufficient to achieve >98% of theoretical density with remarkably high biaxial strength (∼1200 MPa) and prominent hardness (∼15.5 GPa). Among the three additives used, Y2O3–MgO–Al2O3 displayed the finest grain diameter (0.54 μm), whereas Y2O3–MgO–ZrO2 produced the largest average grain diameter (∼0.95 μm); the influence was seen on their mechanical properties. The low additive content Si3N4 system is expected to have superior high-temperature properties compared to the system with high additive content. This study shows a cost-effective fabrication of highly dense Si3N4 with excellent mechanical properties.  相似文献   

4.
Borophosphosilicate bonded porous silicon nitride (Si3N4) ceramics were fabricated in air using a conventional ceramic process. The porous Si3N4 ceramics sintered at 1000–1200 °C shows a relatively high flexural strength and good dielectric properties. The influence of the sintering temperature and contents of additives on the flexural strength and dielectric properties of porous Si3N4 ceramics were investigated. Porous Si3N4 ceramics with a porosity of 30–55%, flexural strength of 40–130 MPa, as well as low dielectric constant of 3.5–4.6 were obtained.  相似文献   

5.
Si3N4 ceramics were prepared by hot pressing (HP) and spark plasma sintering (SPS) methods using low content (5 mol%) Al2O3–RE2O3(RE = Y, Yb, and La)–SiO2/TiN as sintering additives/secondary additives. The effects of sintering additives and sintering methods on the composition, microstructures, and mechanical properties (hardness and fracture toughness) were investigated. The results show that fully density Si3N4 ceramics could be fabricated by rational tailoring of sintering additives and sintering method, and TiN secondary additive could promote the density during HP and SPS. Besides, SN-AYS-SPS possesses the most competitive mechanical properties among all the as-prepared ceramics with the Vickers hardness as 17.31 ± .43 GPa and fracture toughness as 11.07 ± .48 MPa m1/2.  相似文献   

6.
Pressureless sintering of pure γ‐Y2Si2O7 powders that had been synthesized by a solid‐liquid reaction method using Y2O3 and SiO2 powders with Li2O, MgO, and Al2O3 additives was reported. The sintering kinetics of γ‐Y2Si2O7 powders was analyzed to track details of densification evolution. Apparent activation energies of the densification of γ‐Y2Si2O7 powders were reported for the first time, which was 57.1, 96.6, and 100.2 kJ/mol for the powders with Li2O, MgO, and Al2O3 additives, respectively, indicating that Li2O could promote the densification behavior effectively. The flexural strengths as a function of temperature for the γ‐Y2Si2O7 ceramics with different additives were also investigated. The degradation of high‐temperature flexural strength was mainly ascribed to the softening of grain‐boundary glassy phase. γ‐Y2Si2O7 specimens fabricated using the powders with MgO or Al2O3 additives exhibited better high‐temperature mechanical properties.  相似文献   

7.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

8.
Sintered reaction‐bonded Si3N4 ceramics with equiaxed microstructure were prepared with TiO2–Y2O3–Al2O3 additions by rapid nitridation at 1400°C for 2 hours and subsequent post‐sintering at 1850°C for 2 hours under N2 pressure of 3 MPa. It was found that α–Si3N4, β–Si3N4, Si2N2O, and TiN phases were formed by rapid nitridation of Si powders with single TiO2 additives. However, the combination of TiO2 and Y2O3–Al2O3 additives led to the formation of 100% β–Si3N4 phase from the nitridation of Si powders at such low temperature (1400°C), and the removal of Si2N2O phase. As a result, dense β–Si3N4 ceramics with equiaxed microstructure were obtained after post‐sintering at high temperature.  相似文献   

9.
Silicon nitride (Si3N4) ceramics doped with two different sintering additive systems (Al2O3–Y2O3 and Al2O3–Yb2O3) were prepared by hot-pressing sintering at 1800℃ for 2 h and 30 MPa. The microstructures, nano-indentation test, and mechanical properties of the as-prepared Si3N4 ceramics were systematically investigated. The X-ray diffraction analyses of the as-prepared Si3N4 ceramics doped with the two sintering additives showed a large number of phase transformations of α-Si3N4 to β-Si3N4. Grain size distributions and aspect ratios as well as their effects on mechanical properties are presented in this study. The specimen doped with the Al2O3–Yb2O3 sintering additive has a larger aspect ratio and higher fracture toughness, while the Vickers hardness is relatively lower. It can be seen from the nano-indentation tests that the stronger the elastic deformation ability of the specimens, the higher the fracture toughness. At the same time, the mechanical properties are greatly enhanced by specific interlocking microstructures formed by the high aspect ratio β-Si3N4 grains. In addition, the density, relative density, and flexural strength of the as-prepared Si3N4 ceramics doped with Al2O3–Y2O3 were 3.25 g/cm3, 99.9%, and 1053 ± 53 MPa, respectively. When Al2O3–Yb2O3 additives were introduced, the above properties reached 3.33 g/cm3, 99.9%, and 1150 ± 106 MPa, respectively. It reveals that microstructure control and mechanical property optimization for Si3N4 ceramics are feasible by tailoring sintering additives.  相似文献   

10.
Thermal shock resistance of Si2N2O–Si3N4 composites was evaluated by water quenching and subsequent three-point bending tests of strength diminution. Si2N2O–Si3N4 composites which was prepared with in situ liquid pressureless sintering process using Yb2O3 and Al2O3 powders as sintering additives by gelcasting showed no macroscopic cracks and the critical temperature difference (ΔTc) could be up to 1400 °C. A mass of pores existed in the sintered body and the irregular shaped fibers extended from the pores increased the thermal shock property.  相似文献   

11.
Single additives (Y2O3, MgO, and Al2O3) were used as sintering aid of Si3N4. The density, crystal phase, microstructure, transmittance, hardness, and fracture toughness of sintered Si3N4 were investigated. Highly densified sintered bodies were obtained in single Y2O3 and MgO systems, but not in single Al2O3 system. The XRD results indicated that sintered bodies were composed of β‐Si3N4. The SEM images showed that all the sintered bodies had a fine‐grained microstructure with an average diameter of 0.29–0.37 μm. The thickness of grain boundary was changed with additive content. The transmittance (T) and the wavelength (λ) followed the relationship of T∝ exp(?λ?2.3) due to the light scattering. The transmittance was mainly influenced by the refractive index of additives and the thickness of grain boundary phase. The hardness and fracture toughness of sintered ceramics were 12.6–15.5 GPa and 6.2–7.2 MPam1/2, respectively.  相似文献   

12.
《Ceramics International》2019,45(12):15128-15133
In this study, highly dense Si3N4 ceramics with excellent mechanical properties were fabricated using Mg2Si as a sintering additive by plasma-activated sintering at 1400–1500 °C. The effects of the sintering temperature and content of Mg2Si on the densification, microstructures, and mechanical properties of the Si3N4 ceramics were investigated. The mechanism responsible for the effect of Mg2Si in the promotion of the sinterability of Si3N4 is discussed. The results showed that the addition of Mg2Si could effectively remove the oxide layers on the Si3N4 particles and form a liquid phase during the sintering, promoting the densification and phase transition of the Si3N4 ceramics. The Si3N4 ceramic sintered at 1450 °C with 6.0 wt% of Mg2Si exhibited the maximum strength of 1050 MPa.  相似文献   

13.
Abstract

Fully densified Al2O3 ceramics with fine grain size were obtained by pulsed electric current sintering through a two-step heating profile (referred to as TS-PECS). Highly transparent Al2O3 polycrystals with fine grain size (400 nm) were successfully fabricated by the TS-PECS process, namely, sintering at 1000°C for 1 h and followed at 1200°C for 20 min under uniaxial pressure of 100 MPa. Effects of the first step temperature and heating rate were discussed for bulk density, grain size and transparency. The temperature in the first step strongly affects densification and grain growth of Al2O3. On the other hand, heating rate, even of 100 K min?1, in TS-PECS does not give significant influences on densification and grain growth of Al2O3. Inline transmittance at 640 nm in wavelength normalised to 1 mm in thickness is increased by decreasing heating rate even in TS-PECS.  相似文献   

14.
《Ceramics International》2022,48(20):30376-30383
In this study, α/β-Si3N4 composite ceramics with high hardness and toughness were fabricated by adopting two different novel ternary additives, ZrN–AlN–Al2O3/Y2O3, and spark plasma sintering at 1550 °C under 40 MPa. The phase composition, microstructure, grain distribution, crack propagation process and mechanical properties of sintered bulk were investigated. Results demonstrated that the sintered α/β-Si3N4 composite ceramics with ZrN–AlN–Al2O3 contained the most α phase, which resulted in a maximum Vickers hardness of 18.41 ± 0.31 GPa. In the α/β-Si3N4 composite ceramics with ZrN–AlN–Y2O3 additives, Zr3AlN MAX-phase and ZrO phase were found and their formation mechanisms were explained. The fracture appearance presented coarser elongated β-Si3N4 grains and denser microstructure when 20 wt% TiC particles were mixed into Si3N4 matrix, meanwhile, exhibited maximum mean grain diameter of 0.98 ± 0.24 μm. As a result, the compact α/β-Si3N4 composite ceramics containing ZrN–AlN–Y2O3 additives and TiC particles displayed the optimal bending strength and fracture toughness of 822.63 ± 28.75 MPa and 8.53 ± 0.21 MPa?m1/2, respectively. Moreover, the synergistic toughening of rod-like β-Si3N4 grains and TiC reinforced particles revealed the beneficial effect on the enhanced fracture toughness of Si3N4 ceramic matrix.  相似文献   

15.
High-purity silicon powder is used as the starting material for cost-effective preparation of silicon nitride ceramics with both high thermal conductivity and excellent mechanical properties using RE2O3 (RE=Y, La or Er) and MgO as sintering additives. Nitridation is a key procedure that would affect the properties of green bodies and the sintered samples. The β: (α+β) ratio can be increased as the samples nitrided at 1450ºC and a large amount of long rod-like β-Si3N4 grains were developed in the samples. It was found that the addition of Er2O3-MgO could help to improve the mechanical properties of the sintered Si3N4 ceramics, the thermal conductivity, flexural strength and fracture toughness of the sample were 90 W/(m∙K), 953±28.3 MPa and 10.64±0.61 MPa·m1/2, respectively. The RE3+ species with larger ionic radius tended to increase the oxygen of nitrided samples and decrease N/O ratio (triangle grain boundary) of sintered samples.  相似文献   

16.
High-pressure spark plasma sintering of Si3N4 with Y2O3, Al2O3 and LiF additives was employed to fabricate high quality dense ceramics comprising approximately 92% α-Si3N4 phase and 8% β-Si3N4 phase. The relatively high pressure applied (up to 650 MPa) had a substantial effect on densification by enhancing particle rearrangement, making it possible to obtain dense Si3N4 at a significantly lower sintering temperature (1350 °C). Consequently, virtually no α to β phase transformation transpired during the liquid phase sintering process. The LiF additive had an indispensable influence on the densification process by lowering the viscous glass formation temperature, which also contributed to enhanced particle rearrangement. The nearly fully dense samples (theoretical density ≥99%) obtained displayed a good combination of mechanical properties, namely elastic modulus (304–316 GPa), hardness (1720–1780 HV2) and fracture toughness (6.0 MPa m1/2).  相似文献   

17.
This study investigated the effects of glass frits on the sintering and mechanical properties of dental 3Y-TZP ceramics. The glass frits, which consisted of MgO, CaO, Al2O3, SiO2, and P2O5, were selected to lower the sintering temperature of zirconia via liquid phase sintering.The results of the experiment showed that these glass frit additives neither destroy the stability of the high temperature t-phase nor induce grain growth. All the mechanical properties and the relative densities were strongly correlated with the addition of glass frits. At lower sintering temperatures, the presence of glass additives resulted in an increase in mechanical properties. At higher sintering temperatures, the presence of glass additives decreased the mechanical properties.  相似文献   

18.
《Ceramics International》2017,43(18):16248-16257
Si3N4-based composite ceramic tool materials with (W,Ti)C as particle reinforced phase were fabricated by microwave sintering. The effects of the fraction of (W,Ti)C and sintering temperature on the mechanical properties, phase transformation and microstructure of Si3N4-based ceramics were investigated. The frictional characteristics of the microwave sintered Si3N4-based ceramics were also studied. The results showed that the (W,Ti)C would hinder the densification and phase transformation of Si3N4 ceramics, while it enhanced the aspect-ratio of β-Si3N4 which promoted the mechanical properties. The Si3N4-based composite ceramics reinforced by 15 wt% (W,Ti)C sintered at 1600 °C for 10 min by microwave sintering exhibited the optimum mechanical properties. Its relative density, Vickers hardness and fracture toughness were 95.73 ± 0.21%, 15.92 ± 0.09 GPa and 7.01 ± 0.14 MPa m1/2, respectively. Compared to the monolithic Si3N4 ceramics by microwave sintering, the sintering temperature decreased 100 °C,the Vickers hardness and fracture toughness were enhanced by 6.7% and 8.9%, respectively. The friction coefficient and wear rate of the Si3N4/(W,Ti)C sliding against the bearing steel increased initially and then decreased with the increase of the mass fraction of (W,Ti)C., and the friction coefficient and wear rate reached the minimum value while the fraction of (W,Ti)C was 15 wt%.  相似文献   

19.
Silicon nitride (Si3N4) ceramics were fabricated by gas pressure sintering (GPS) using four sintering additives: Y2O3–MgO, Y2O3–MgF2, YF3–MgO, and YF3–MgF2. The phase composition, grain growth kinetics, mechanical properties, and thermal conductivities of the Si3N4 ceramics were compared. The results indicated that the reduction of YF3 on SiO2, induced a high Y2O3/SiO2 secondary phase ratio, which improved the thermal conductivity of the Si3N4 ceramics. The depolymerization of F atom reduces the diffusion energy barrier of solute atom and weakens the viscous resistance of anion group, which was beneficial to grain boundary migration. Besides exhibiting a lower grain growth exponent(n = 2.5)and growth activation energy (Q = 587.94 ± 15.35 kJ/mol), samples doped with binary fluorides showed excellent properties, including appreciable thermal conductivity (69 W m−1 K−1), hardness (14.63 ± 0.12 GPa), and fracture toughness (8.75 ± 0.18 MPa m1/2), as well as desirable bending strength (751 ± 14 MPa).  相似文献   

20.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号