首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
氯/紫外(Cl/UV)工艺十分适合低有机物污水的应急脱氮处理。文中研究了Cl/UV工艺辅助膜生物反应器(MBR)脱氮的效果和影响因素,并研究确立了最佳工艺参数。结果表明,Cl/UV工艺可以在相同Cl/N下,实现比折点氯化更好的脱氮效果、更低的出水余氯含量。工艺进水的pH值在6.5~8.0对处理效果没有显著影响。当进水氨氮质量浓度<12 mg/L时,采用Cl/UV工艺比折点氯化更经济,此时可以通过文中公式计算最佳Cl/N。过高的进水CODCr(>50 mg/L)会导致所需Cl/N增加,且Cl/UV工艺对CODCr的去除效果不佳。Cl/UV工艺产生的消毒副产物主要为三氯甲烷、三氯乙烷、三氯乙醛和二氯乙腈,生成量随Cl/N的增大而增大,随初始氨氮浓度和UV强度的增大而下降。  相似文献   

2.
为使鸟粪石生产废水中的氨氮达标排放,采用折点氯化法加以处理。通过单因素试验考察有效氯浓度、氯氮质量比、反应温度、反应时间、 pH值对氨氮脱除效果的影响。结果表明:在室温条件下,用有效氯浓度为13.9%的次氯酸钠药剂处理初始氨氮质量浓度为219.14 mg/L的高含盐废水,当pH值为7~8,氯氮质量比为8∶1,反应30 min时,氨氮去除率最高达到96.58%,出水氨氮浓度满足DB 37/3416.5—2018《流域水污染物综合排放标准》中ρ(氨氮)<10 mg/L的排放要求。  相似文献   

3.
基于响应面优化法,研究紫外/氯耦合处理饮用水中氨氮的效能。考察氯氮质量比、紫外辐射时间和pH值3个影响因素及其交互作用对氨氮去除的影响,采用二阶方程进行数学模拟,并优化工艺条件。结果表明,紫外/氯耦合技术能有效去除氨氮,三因素均对氨氮的去除影响显著,各因素的交互作用也显著存在。数学拟合模型的相关系数较高(R2=0.992),模型回归性好。满足饮用水氨氮出水要求(0.5 mg·L-1)的最优工艺条件为:氯氮质量比4.00,紫外辐射时间6.00 min和pH值7.5。验证实验结果与预测值的偏差仅为0.64%,响应面拟合方程可用于氨氮去除率的预测和最优工艺条件的确定。紫外/氯耦合技术是一种新型的氨氮去除方法,具有投药量小、去除效率高、操作简单等优点。  相似文献   

4.
采用三电极体系探究了Ti/RuO2-IrO2、Ti/SnO2-Sb2O3、Ti/Pt、石墨4类电极的电化学性能,考察了不同电极材料、初始pH、初始Cl-质量浓度、电流密度对生成活性氯浓度的影响。在选取较优的操作条件下电解模拟氨氮废水,结果表明,以Ti/RuO2-IrO2电极为阳极,在初始pH为7、初始Cl-质量浓度为12 500 mg/L、电流密度为100 A/m2的条件下电解120 min氨氮,总氮去除率分别达96.71%、90.44%;活性炭吸附150 min,总氯、余氯去除率分别达到98.43%、98.81%,减小了废水对后续生物处理系统的影响。  相似文献   

5.
针对医药废水生化出水,采用电化学中试装置进行深度处理,研究了初始pH、电解质投加量、电流密度等因素对处理效果的影响。试验结果表明,电化学工艺的最佳运行条件为:初始pH值为7~8,NaCl投加量为10 g/L,电解时间为15 min,电流密度为100 A/m~2。在此条件下去除每公斤COD_(Cr)的耗电量最低,为10.0 kW·h/(kg COD_(Cr))。该中试反应器极板寿命约为4.2年,运行稳定,出水COD_(Cr)可稳定在300 mg/L左右,氨氮在10 mg/L以下,达到纳管排放标准。  相似文献   

6.
紫外/氯耦合处理饮用水中氨氮的响应面优化   总被引:1,自引:0,他引:1       下载免费PDF全文
基于响应面优化法,研究紫外/氯耦合处理饮用水中氨氮的效能。考察氯氮质量比、紫外辐射时间和pH值3个影响因素及其交互作用对氨氮去除的影响,采用二阶方程进行数学模拟,并优化工艺条件。结果表明,紫外/氯耦合技术能有效去除氨氮,三因素均对氨氮的去除影响显著,各因素的交互作用也显著存在。数学拟合模型的相关系数较高(R2=0.992),模型回归性好。满足饮用水氨氮出水要求(0.5 mg·L?1)的最优工艺条件为:氯氮质量比4.00,紫外辐射时间6.00 min和pH值7.5。验证实验结果与预测值的偏差仅为0.64%,响应面拟合方程可用于氨氮去除率的预测和最优工艺条件的确定。紫外/氯耦合技术是一种新型的氨氮去除方法,具有投药量小、去除效率高、操作简单等优点。  相似文献   

7.
将高效节能微波脱氨技术应用到煤气化污水的脱氨过程,实验研究了微波条件下pH值、反应温度和处理时间等因素对氨氮去除效果的影响。结果表明,对氨氮初始浓度为7 112.7 mg/L的污水,pH值为11以上,温度为80℃,微波处理20 min氨氮去除率达到90%以上。  相似文献   

8.
为了研究氨氮和有机氮化合物共存体系加氯消毒条件下N-亚硝基二甲胺(NDMA)的生成规律,采用50mg/L氨氮加氯消毒再与30mg/L 的二甲胺(DMA)反应,首先研究了反应时间、氯胺浓度、pH值、氯氮比(自由氯与氨氮的质量比)对NDMA生成量的影响;然后在此基础上选取废水体系中具有代表性的3种有机氮化合物尿素、甘氨酸、苯丙氨酸,重点考察了这3种有机氮化合物对氯胺以及对NDMA生成情况的影响。结果表明:pH值和氯氮比对NDMA生成量影响最大;氨氮溶液中加入有机氮化合物后加氯消毒,会使生成一氯胺浓度的峰值点向氯氮比增大的方向移动,同时会降低同一氯氮比下NDMA的生成量。  相似文献   

9.
采用沸石填料电化学反应器处理低浓度氨氮废水,研究了阳极材料、粒子电极、阴极材料、电流密度、初始pH、曝气对氨氮去除效果的影响。结果表明,在钌铱锡阳极板(DSA)为阳极、活性碳纤维(ACF)为阴极、载铁斜发沸石为填料、电流密度为6 mA/cm2、pH为5、曝气量为5 L/min条件下,质量浓度为20 mg/L的模拟氨氮废水经处理后出水氨氮质量浓度为3 mg/L左右,且出水水质清澈。NH+4在直流电场作用下向阴极定向移动,曝气对阳极处理氨氮没有影响,·OH氧化氨氮可使氨氮质量浓度降低一半左右,氨氮降低至一定质量浓度时,·OH无法继续对其氧化,阴极附近氨氮质量浓度在20 min后基本保持不变。  相似文献   

10.
采用电化学氧化工艺处理某制药厂高氨氮废水,考察了初始pH、电解质浓度、电流密度、极板间距对废水处理效果的影响。在弱碱条件下,增加电解质浓度、提升电流密度和减小极板间距等措施有利于降解性能的提升。基于废水处理效果及能耗综合考虑,确定了最佳的操作条件:初始pH值为8.0,电解质质量浓度为6.0 g/L,电流密度为20 mA/cm2,极板间距为1 cm,电解时间为3.0 h。在此条件下,废水氨氮、化学需氧量的去除效率分别为84.76%、45.93%,运行能耗为69.12 kW·h/m3,运行电费为55.30元/m3。通过该方法处理高氨氮制药废水,可在降低废水氨氮的同时,实现废水中大量有机物的去除,具有较好的环境效益和社会效益。  相似文献   

11.
针对海上平台高盐生活污水的水质特点,采用ECO(电催化氧化)一体化反应器对其进行了中试试验研究,考察了电流密度、停留时间、pH、温度对反应器处理效果的影响。结果表明:ECO一体化反应器对该类废水的处理效果不受pH、温度的影响,在电流密度为10 mA/cm2,停留时间为60 min的条件下,出水COD≤125 mg/L,达到排放标准的要求。  相似文献   

12.
陶仁杰  李祥  黄勇 《现代化工》2023,(8):213-218
以Ti/RuO2-IrO2电极为阳极、不锈钢电极为阴极构建电化学氧化工艺,用于前置反硝化/PN/Anammox混凝后的垃圾渗滤液脱氮除碳处理的研究。采用响应曲面法的BBD法考察电流密度、极板间距、初始pH、反应时间对COD去除率的交互影响,并建立相关的数学模型,分析电化学氧化过程中总氮的转化。结果表明,各个影响因素显著,模型回归线性好,预测COD去除率最大值为89.38%。最佳实验条件为:电流密度为350 mA/cm2、极板间距为24 mm、初始pH为7.0、反应时间为3.2 h。实际测得的COD去除率为90.12%,对腐殖酸、腐殖质类物质去除效果好,总氮中的氨氮被完全去除,部分氨氮转化为硝氮。  相似文献   

13.
庞锐  张峰  崔建国 《现代化工》2023,(2):149-154
采用循环流反应器,以DSA(Ti/IrO2-RuO2)电极为阳极,考察了3种不同材质阴极(CuZn合金、Ti、Zn)对电化学消毒效果及无机消毒副产物生成的影响,同时探究了电流密度、初始Cl-浓度与初始pH对该过程的影响。结果表明,在相同的实验条件下,阴极材质的改变对电化学消毒效果无明显影响,但采用CuZn合金阴极较其余2种阴极生成的氯酸盐更少。电化学析氯消毒对大肠杆菌的灭活效果随着电流密度与初始Cl-浓度的升高而升高,随pH升高而降低。  相似文献   

14.
采用间歇试验的方法对电化学氧化处理模拟高浓度氨氮废水的影响因素进行研究。分别考察了电流密度、极板间距、氯离子浓度、反应初始pH值对氨氮和总氮去除率的影响。试验结果表明:电化学氧化法去除氨氮和总氮的最佳电流密度为80mA/cm^2,极板间距为30mm,氯离子质量浓度为7000mg/L,pH值为9~11。  相似文献   

15.
房平  邵瑞华 《广东化工》2014,(8):187-188
通过采用电絮凝法处理煤化工企业的废水,研究了电流密度,Cl离子浓度,初始pH,极板间距等因素对去除氨氮效果的影响。结果表明,氨氮去除率随电流密度的增大而增加,随极板间距的增大而减小,且在中性和弱碱性,一定氯离子浓度环境下氨氮去除效果较好。本实验的最佳参数为pH 7.0,电流密度为60 mA/cm2,极板间距为1.0 cm,氯离子浓度为0.7 mol/L。  相似文献   

16.
采用填充沸石的电化学反应器对20 mg/L的氨氮模拟污水进行处理研究,考察了影响氨氮去除效果的主要因素及处理效果。结果表明:当采用不锈钢板作为阴阳极、电流密度8 m A/cm2、电源电压60 V、初始p H=5、载铁斜发沸石填充量为200 g/L、曝气量为7 L/min、反应时间20 min时,废水中氨氮质量浓度能从20 mg/L降低到5 mg/L左右,达到国家城市污水处理厂一级A的排放标准(GB 18918—2002)。  相似文献   

17.
罗军  鲁秀国  王伟 《水处理技术》2023,(6):101-104+111
基于超重力技术处理氨氮废水的工作原理与机制,引入高活性药剂-解氨剂协同处理,着重研究活性剂投放量、pH、温度、气液比、电机转速、废水初始浓度等因素对脱氮率的影响。得出在解氨剂投加量60 mg/L,pH=13,温度45℃,气液比2 500 L/m3,电机转数1 400 r/min的试验条件下,氨氮脱除率最高达到97.8%,废水初始浓度对脱氮率影响不大。与传统吹脱技术不同的是,超重力技术在效果稳定性、操作难度、处理成本和氨氮去除效率等方面具有显著优势,市场化推广具有重大潜力。  相似文献   

18.
采用自组装电化学氯化装置处理养猪废水生化出水,考察了废水氨氮的降解历程。因素影响分析表明,随着氯离子投加量的增加(0~2 000 mg/L),氨氮平均去除速率逐渐上升(0.044~2.502 mg/min);当氯离子质量浓度为1 000 mg/L,初始pH=9时,氨氮最大去除率达98%以上仅需90 min。电化学氯化脱氮过程表明,氨氮降解主要依靠间接氧化,即活性氯与氨氮作用生成氯胺、氯胺转化为氮气2个阶段;体系脱氮过程符合零级反应动力学。  相似文献   

19.
采用电絮凝—电解耦合技术处理船舶生活污水,研究了电絮凝过程中电流密度、电絮凝时间、污水盐度、极板间距、污水初始pH等因素对船舶生活污水COD去除率的影响;进一步采用自制Ti/SnO2-Sb2O3/β-PbO2-La电极深度电解处理电絮凝后的污水,并对电解过程中的电流密度、电解时间等进行考察。结果表明:在最佳电絮凝条件下,COD去除率可达到64%;在随后的电解深度处理过程中,当电流密度为0.06 A/cm2、电解时间为180 min时,COD总去除率为93%。  相似文献   

20.
电化学氧化法处理高浓度氨氮废水的研究   总被引:1,自引:0,他引:1  
采用间歇试验的方法对电化学氧化处理模拟高浓度氨氮废水的影响因素进行研究。分别考察了电流密度、极板间距、氯离子浓度、反应初始pH值对氨氮和总氮去除率的影响。试验结果表明,电化学氧化法去除氨氮和总氮的最佳电流密度为80mA/cm2,极板间距为30mm,氯离子质量浓度为7000mg/L,pH值为9~11。在上述条件下,反应7h,总氮的质量浓度从3000mg/L降到379.4mg/L,去除率达到87.35%。电化学氧化法对总氮的去除基本符合一级反应动力学规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号