首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because RNA interference (RNAi) can be applied to any gene, this technique has been widely used for studying gene functions. In addition, many researchers are attempting to use RNAi technology in RNAi-based therapies. However, several challenging and controversial issues have arisen during the widespread application of RNAi including target gene specificity, target cell specificity, and spatiotemporal control of gene silencing. To address these issues, several groups have utilized photochemistry to control the RNA release, both spatially and temporally. In this Account, we focus on recent studies using photocleavable protecting groups, photosensitizers, Hand gold nanoparticles for photoinduced RNAi. In 2005 the first report of photoinduced RNAi used a caged short interfering RNA (siRNA), an siRNA carrying a photocleavable protecting group. Caging groups block the bioactivities of target molecules, but allow for complete recovery of these functions via photoactivation. However, some RNAi activity can occur in these caged siRNAs, so it will be necessary to decrease this "leakage" and raise the RNAi activity restored after irradiation. This technique also uses UV light around 350 nm, which is cytotoxic, but in the near future we expect that it will be possible to use visible and near-infrared light We also examine the application of photochemical internalization (PCI) to RNAi technology, which involves a combination of photosensitizers and light. Instead of inducing RNAi using light, the strategy behind this method was to enhance RNAi using RNA carriers. Many wellknown RNA carriers deliver siRNAs into cells by endocytosis. The siRNAs are trapped in endocytic vesicles and have to be released into the cytoplasm in order to express their activity. To achieve the endosomal escape of siRNAs, PCI technology employed photosensitizers to generate light-dependent reactive oxygen species (ROS) that disrupted the endocytic vesicles. In most studies, RNAi-mediated knockdown of the target gene was detected even without PCI. Recently, a polymer capable of trapping the siRNA in endocytic vesicles controlled RNAi almost entirely by light. CLIP-RNAi uses photosensitizing carrier proteins that can be activated over a wide range of visible light wavelengths. With this method RNA carrier/siRNA complexes are completely trapped within endosomes, and RNAi is controlled strictly by light. Such precise, light-dependent control will open up new possibilities for cellular and molecular biology and therapy. Most recently, gold nanoparticles (AuNPs) conjugated to siRNA have provided temporal and spatial control of RNAi. The light-dependent melting of AuNPs accompanied by a shape transformation induces the release of thiolated siRNAs from AuNPs. In this method, the unique optical properties of the AuNP enable deep penetration of the excitation light into tissues at nearinfrared wavelengths. The development of photoinduced RNAi technology will lead to novel insights into gene functions and selective drug delivery, and many other scientific fields will continue to influence its progress.  相似文献   

2.
Because of RNA's ability to encode structure and functional information, researchers have fabricated diverse geometric structures from this polymer at the micro- and nanoscale. With their tunable structures, rigidity, and biocompatibility, novel two-dimensional and three-dimensional RNA structures can serve as a fundamental platform for biomedical applications, including engineered tissues, biosensors, and drug delivery vehicles. The discovery of the potential of small-interfering RNA (siRNA) has underscored the applications of RNA-based micro- and nanostructures in medicine. Small-interfering RNA (siRNA), synthetic double-stranded RNA consisting of approximately 21 base pairs, suppresses problematic target genes in a sequence-specific manner via inherent RNA interference (RNAi) processing. As a result, siRNA offers a potential strategy for treatment of many human diseases. However, due to inefficient delivery to cells and off-target effects, the clinical application of therapeutic siRNA has been very challenging. To address these issues, researchers have studied a variety of nanocarrier systems for siRNA delivery. In this Account, we describe several strategies for efficient siRNA delivery and selective gene silencing. We took advantage of facile chemical conjugation and complementary hybridization to design novel siRNA-based micro- and nanostructures. Using chemical crosslinkers and hydrophobic/hydrophilic polymers at the end of siRNA, we produced various RNA-based structures, including siRNA block copolymers, micelles, linear siRNA homopolymers, and microhydrogels. Because of their increased charge density and flexibility compared with conventional siRNA, these micro- and nanostructures can form polyelectrolyte complexes with poorly charged and biocompatible cationic carriers that are both more condensed and more homogenous than the complexes formed in other carrier systems. In addition, the fabricated siRNA-based structures are linked by cleavable disulfide bonds for facile generation of original siRNA in the cytosol and for target-specific gene silencing. These newly developed siRNA-based structures greatly enhance intracellular uptake and gene silencing both in vitro and in vivo, making them promising biomaterials for siRNA therapeutics.  相似文献   

3.
The delivery of genes or RNA interference (RNAi) agents can increase or decrease the expression of virtually any protein in a cell, and this process opens the path for cures to most diseases that afflict humans. However, the high molecular weight, anionic nature, and instability of nucleic acids in the presence of enzymes pose major obstacles to their delivery and frustrates their use as human therapies. This Account describes current ideas about the mechanisms in nonviral nucleic acid delivery and how lipidic and polymeric carriers can overcome some of the critical barriers to delivery. Over the last 20 years, researchers have developed a multitude of polymeric and lipidic vectors, but only a small fraction of these have progressed into clinical trials. None of these vectors has received FDA approval, which indicates that the current vectors do not yet have suitable properties for effective in vivo nucleic acid delivery. Nucleic acid delivery is a multistep process and inefficiencies at any stage result in a dramatic decrease in gene delivery or gene silencing. However, the majority of studies investigating synthetic vectors focus solely on optimization of endosomal escape. A small number of studies address how to improve uptake via targeted delivery, and an even smaller fraction examine the intracellular fate of the delivery systems and nucleic acid cargo. The internalization of genes into the cell nucleus remains an inefficient and mysterious process. In the case of DNA delivery, strategies are needed to increase and accelerate the migration of DNA through the cytoplasm and transport it through the nuclear membrane. siRNA delivery involves fewer barriers. siRNA is more readily released from the carrier and more resistant to enzymatic degradation, and its target is in the cytoplasm; hence, siRNA delivery systems are becoming a clinical reality. With regard to siRNA therapy, the exact cytoplasmic location of RNA-induced silencing complex (RISC) formation and activity is unknown, which makes specific targeting of the RISC for more efficient delivery difficult. Furthermore, we would like to identify the factors that favor the binding of siRNA to Ago-2. If we could understand how the half-life of siRNA and Ago-2/siRNA complex in the cytoplasm can be modulated without interfering with RISC functions that are essential for normal cell activity, we could increase siRNA delivery efficiency. In this Account, we review the current synthetic vectors and propose alternative strategies in a few cases. We also suggest how certain cellular mechanisms might be exploited to improve gene transfection and silencing. Finally, we discuss whether some carriers that deliver the siRNA to cells could also repackage the siRNA into exosomes. The exosomes would then transport the siRNA into a subsequent population of cells that manifest the siRNA effect. This piggy-back mechanism may be responsible for reported deep tissue siRNA effects using certain carriers.  相似文献   

4.
Silencing the expression of a target gene by RNA interference (RNAi) shows promise as a potentially revolutionizing strategy for manipulating biological (pathological) pathways at the translational level. However, the lack of reliable, efficient, versatile, and safe means for the delivery of small interfering RNA (siRNA) molecules, which are large in molecular weight, negatively charged, and subject to degradation, has impeded their use in basic research and therapy. Polyplexes of siRNA and polymers are the predominant mode of siRNA delivery, but innovative synthetic strategies are needed to further evolve them to generate the desired biological and therapeutic effects. This Account focuses on the design of polymeric vehicles for siRNA delivery based on an understanding of the molecular interactions between siRNA and cationic polymers. Ideal siRNA/polymer polyplexes should address an inherent design dilemma for successful gene silencing: (1) Cationic polymers must form tight complexes with siRNA via attractive electrostatic interactions during circulation and cellular internalization and (2) siRNA must dissociate from its cationic carrier in the cytoplasm before they are loaded into RNA-induced silencing complex (RISC) and initiate gene silencing. The physicochemical properties of polymers, which dictate their molecular affinity to siRNA, can be programmed to be altered by intracellular stimuli, such as acidic pH in the endosome and cytosolic reducers, subsequently inducing the siRNA/polymer polyplex to disassemble. Specific design goals include the reduction of the cationic density and the molecular weight, the loss of branched structure, and changes in the hydrophilicity/hydrophobicity of the polymeric siRNA carriers, via acid-responsive degradation and protonation processes within the endosome and glutathione (GSH)-mediated reduction in the cytoplasm, possibly in combination with gradual stimuli-independent hydrolysis. Acetals/ketals are acid-cleavable linkages that have been incorporated into polymeric materials for stimuli-responsive gene and drug delivery. Tailoring the ketalization ratio and the molecular weight of ketalized branched PEI (K-BPEI) offers molecular control of the intracellular trafficking of siRNA/polymer polyplexes and, therefore, the gene silencing efficiency. The ketalization of linear PEI (K-LPEI) enhances gene silencing in vitro and in vivo by improving siRNA complexation with the polymer during circulation and cellular internalization, supplementing proton buffering efficiency of the polymer in the endosome, and facilitating siRNA dissociation from the polymer in the cytoplasm, in a serum-resistant manner. Spermine polymerization via ketalization and esterification for multistep intracellular degradations provides an additional polymeric platform for improved siRNA delivery and highly biocompatible gene silencing. The chemistry presented in this Account will help lay the foundation for the development of innovative and strategic approaches that advance RNAi technology.  相似文献   

5.
A light‐activatable bacteriophage T7 RNA polymerase (T7RNAP) has been generated through the site‐specific introduction of a photocaged tyrosine residue at the crucial position Tyr639 within the active site of the enzyme. The photocaged tyrosine disrupts polymerase activity by blocking the incoming nucleotide from reaching the active site of the enzyme. However, a brief irradiation with nonphototoxic UV light of 365 nm removes the ortho‐nitrobenzyl caging group from Tyr639 and restores the RNA polymerase activity of T7RNAP. The complete orthogonality of T7RNAP to all endogenous RNA polymerases in pro‐ and eukaryotic systems allowed for the photochemical activation of gene expression in bacterial and mammalian cells. Specifically, E. coli cells were engineered to produce photocaged T7RNAP in the presence of a GFP reporter gene under the control of a T7 promoter. UV irradiation of these cells led to the spatiotemporal activation of GFP expression. In an analogous fashion, caged T7RNAP was transfected into human embryonic kidney (HEK293T) cells. Irradiation with UV light led to the activation of T7RNAP, thereby inducing RNA polymerization and expression of a luciferase reporter gene in tissue culture. The ability to achieve spatiotemporal regulation of orthogonal RNA synthesis enables the precise dissection and manipulation of a wide range of cellular events, including gene function.  相似文献   

6.
We genetically encoded three new caged tyrosine analogues with improved photochemical properties by using an engineered pyrrolysyl‐tRNA synthetase/tRNACUA pair in bacterial and mammalian cells. We applied the new tyrosine analogues to the photoregulation of firefly luciferase by caging its key tyrosine residue, Tyr340, and observed excellent off‐to‐on light switching. This reporter was then used to evaluate the activation rates of the different light‐removable protecting groups in live cells. We identified the nitropiperonyl caging group as an excellent compromise between incorporation efficiency and photoactivation properties. To demonstrate applicability of the new caged tyrosines, an important proteolytic enzyme, tobacco etch virus (TEV) protease, was engineered for optical control. The ability to incorporate differently caged tyrosine analogues into proteins in live cells further expands the unnatural amino acid and optogenetic toolbox.  相似文献   

7.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) regulate gene expression in a sequence-specific manner. Genes with partial complementarity to siRNA/miRNA sequences in their 3′-untranslated regions (UTRs) are suppressed by a mechanism referred to as the siRNA off-target effect or miRNA-mediated RNA silencing. However, the determinants of such RNA silencing efficiency are poorly understood. Previously, I and co-workers reported that the efficiency of RNA silencing is strongly correlated with the thermodynamic stability of base pairing in the duplex formed within an siRNA/miRNA and between the seed region and its target mRNA. In this review, I first summarize our previous studies that identified the thermodynamic parameter to estimate the silencing efficiency using the calculated base pairing stability: siRNAs downregulate the expression of off-target genes depending on the stability of binding between the siRNA seed region (nucleotides 2–8) and off-target mRNAs, and miRNAs downregulate target mRNA expression depending on the stability of the duplex formed between the 5′ terminus of the miRNA and its target mRNA. I further discuss the possibility that such thermodynamic features of silencing efficiency may have arisen during evolution with increasing body temperature in various organisms.  相似文献   

8.
9.
Auxin, a plant hormone, is polar transported from its site of production. This auxin polar transport system establishes an auxin gradient in plant tissue that is necessary for proper plant development. Therefore, the spatial effect of the auxin gradient on plant development is highly important for the understanding of plant auxin responses. Herein we report the design, syntheses and biological properties of esterase‐resistant caged auxins. The conventional caging group, 2‐nitrobenzyl ester, was found to be enzymatically hydrolyzed in plant cells and released original auxin without photolysis. The esterase‐resistant caging group, (2,5‐dimethoxyphenyl)(2‐nitrobenzyl) ester, (DMPNB) was designed to improve the stability of caged auxins. Three auxins, indole 3‐acetic acid, naphthalene 1‐acetic acid and 2,4‐dichlorophenoxy acetic acid were caged with the DMPNB caging group. DMPNB‐caged auxins were inactive within a plant cell until photolysis, but they release auxins with photoirradiation to activate auxin‐responsive gene expression. We demonstrated spatial and temporal control of intracellular auxin levels with photoirradiation by using this caged auxin system and were able to photocontrol the physiological auxin response in Arabidopsis plants. Additionally, the photoirradiation of DMPNB‐caged auxin within a single cell can manipulate the intracellular auxin level and triggers auxin response.  相似文献   

10.
Neurotransmitter uncaging, especially that of glutamate, has been used to study synaptic function for over 30 years. One limitation of caged glutamate probes is the blockade of γ‐aminobutyric acid (GABA)‐A receptor function. This problem comes to the fore when the probes are applied at the high concentrations required for effective two‐photon photolysis. To mitigate such problems one could improve the photochemical properties of caging chromophores and/or remove receptor blockade. We show that addition of a dicarboxylate unit to the widely used 4‐methoxy‐7‐nitroindolinyl‐Glu (MNI‐Glu) system reduced the off‐target effects by about 50–70 %. When the same strategy was applied to an electron‐rich 2‐(p‐Phenyl‐o‐nitrophenyl)propyl (PNPP) caging group, the pharmacological improvements were not as significant as in the MNI case. Finally, we used very extensive biological testing of the PNPP‐caged Glu (more than 250 uncaging currents at single dendritic spines) to show that nitro‐biphenyl caging chromophores have two‐photon uncaging efficacies similar to that of MNI‐Glu.  相似文献   

11.
Small interfering RNA (siRNA)‐mediated silencing requires siRNA loading into the RNA‐induced silencing complex (RISC). Presence of 5′‐phosphate (5′‐P) is reported to be critical for efficient RISC loading of the antisense strand (AS) by anchoring it to the mid‐domain of the Argonaute2 (Ago2) protein. Phosphorylation of exogenous duplex siRNAs is thought to be accomplished by cytosolic Clp1 kinase. However, although extensive chemical modifications are essential for siRNA–GalNAc conjugate activity, they can significantly impair Clp1 kinase activity. Here, we further elucidated the effect of 5′‐P on the activity of siRNA–GalNAc conjugates. Our results demonstrate that a subset of sequences benefit from the presence of exogenous 5′‐P. For those that do, incorporation of 5′‐(E)‐vinylphosphonate (5′‐VP), a metabolically stable phosphate mimic, results in up to 20‐fold improved in vitro potency and up to a threefold benefit in in vivo activity by promoting Ago2 loading and enhancing metabolic stability.  相似文献   

12.
RNA interference (RNAi ), sequence‐specific gene silencing triggered by double‐stranded, small interfering RNA (siRNA), has become a facile and effective tool for biological research and holds potential for therapeutic applications. However, the application of siRNA is hindered by susceptibility to nucleases and off‐target effects. In this study, we introduced artificial nucleotides, serinol nucleic acid (SNA), with an acyclic scaffold, at the termini of siRNA strands. Our aim was appropriately to accommodate the antisense strand in an RNA‐induced silencing complex (RISC) by inhibiting sense‐strand incorporation and thus improve resistance to nuclease‐mediated degradation. Substitution of SNA into siRNA at both termini of the sense strand and at the 3′ terminus of the antisense strand improved antisense strand selectivity remarkably in the formation of RISC, RNAi activity, and nuclease resistance.  相似文献   

13.
Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.  相似文献   

14.
Small interfering RNA (siRNA) is the most important tool for the manipulation of mRNA expression and needs protection from intracellular nucleases when delivered into the cell. In this work, we examined the effects of siRNA modification with the phosphoryl guanidine (PG) group, which, as shown earlier, makes oligodeoxynucleotides resistant to snake venom phosphodiesterase. We obtained a set of siRNAs containing combined modifications PG/2′-O-methyl (2′-OMe) or PG/2′-fluoro (2′-F); biophysical and biochemical properties were characterized for each duplex. We used the UV-melting approach to estimate the thermostability of the duplexes and RNAse A degradation assays to determine their stability. The ability to induce silencing was tested in cultured cells stably expressing green fluorescent protein. The introduction of the PG group as a rule decreased the thermodynamic stability of siRNA. At the same time, the siRNAs carrying PG groups showed increased resistance to RNase A. A gene silencing experiment indicated that the PG-modified siRNA retained its activity if the modifications were introduced into the passenger strand.  相似文献   

15.
The creation of caged molecules involves the attachment of protecting groups to biologically active compounds such as ligands, substrates and drugs that can be removed under specific conditions. Photoremovable caging groups are the most common due to their ability to be removed with high spatial and temporal resolution. Here, the synthesis and photochemistry of a caged inhibitor of protein farnesyltransferase is described. The inhibitor, FTI, was caged by alkylation of a critical thiol group with a bromohydroxycoumarin (Bhc) moiety. While Bhc is well established as a protecting group for carboxylates and phosphates, it has not been extensively used to cage sulfhydryl groups. The resulting caged molecule, Bhc-FTI, can be photolyzed with UV light to release the inhibitor that prevents Ras farnesylation, Ras membrane localization and downstream signaling. Finally, it is shown that Bhc-FTI can be uncaged by two-photon excitation to produce FTI at levels sufficient to inhibit Ras localization and alter cell morphology. Given the widespread involvement of Ras proteins in signal transduction pathways, this caged inhibitor should be useful in a plethora of studies.  相似文献   

16.
Rice black-streaked dwarf virus (RBSDV) belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA) construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA). By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.  相似文献   

17.
A detailed study of the modification pattern-RNAi activity relationships by using siRNAs that are modified with 4'-thioribonucleosides has been carried out against photinus luciferase and renilla luciferase genes in cultured mammalian NIH/3T3, HeLa, and MIA PaCa-2 cell lines. When the photinus luciferase gene was targeted, all of the modified siRNAs showed activity equal to, or less than the unmodifed siRNA. In contrast, all modified siRNAs that have a similar modification pattern showed activity equal to or much higher than the unmodified siRNA when tested with the renilla luciferase gene. These results indicated that siRNAs such as RNA33 and RNA53, which each have four residues of the 4'-thioribonucleoside unit on both ends of the sense strand and four residues on the 3'-end of the antisense strand, were the most effective. Accordingly, we succeeded in developing modified siRNAs that have the greatest number of 4'-thioribonucleosides without loss of RNAi activity, and that exhibit potent RNAi activity against two target genes in three different cell lines. Our findings also indicate the significance of target sequences and cell lines when RNAi activity is compared with that of the unmodified siRNA.  相似文献   

18.
19.
Although gene therapy offers an attractive strategy for treating inherited disorders, current techniques using viral and nonviral delivery systems have not yielded many successful results in clinical trials. Viral vectors such as retroviruses, lentiviruses, and adenoviruses deliver genes efficiently; however, the possibility of negative outcomes from viral transformation cannot be completely ruled out. In contrast, various types of nonviral vectors are attracting considerable attention because they are easier to handle and induce weak immune responses. Cationic polymers, such as polyethylenimine (PEI) and poly(N,N-dimethylaminopropyl acrylamide) (PDMAPAAm), can generate nanoparticles through the formation of polyion complexes, "polyplexes" with DNA. These nonviral systems offer many advantages over viral systems. The primary obstacle to implementing these cationic polymers in an effective gene therapy remains their comparatively inefficient gene transfection in vivo. We describe four strategies for the development of hyperbranched star vectors (SVs) for enhancing DNA or siRNA delivery. The molecular design was performed by living radical polymerization in which the chain length can be controlled by photoirradiation and solution conditions, including concentrations of the monomer or iniferter (a molecule that serves as a combination of initiator, transfer agent, and terminator). The branch composition is controlled by the types of monomers that are added stepwise. In our first strategy, we prepared a series of only cationic PDMAPAAm-based SVs with no branches or 3, 4, or 6 branching numbers. These SVs could form polyion complexes (polyplexes) by mixing with DNA only in aqueous solution. The relative gene expression activity of the delivered DNA increased according to the degree of branching. In addition, increasing the molecular weight of SVs and narrowing their polydispersity index (PDI) improved their activity. For targeting DNA delivery to the specific cells, we modified the SV with ligands. Interestingly, the SV could adsorb the RGD peptide, making gene transfer possible in endothelial cells which are usually refractory to such treatments. The peptide was added to the polyplex solution without covalent derivatization to the SV. The introduction of additional branching by cross-linking using iniferter-induced coupling reactions further improved gene transfection activity. After block copolymerization of PDMAPAAm-based SVs with a nonionic monomer (DMAAm), the blocked SVs (BSVs) produced polyplexes with DNA that had excellent colloidal stability for 1 month, leading to efficient in vitro and in vivo gene delivery. Moreover, BSVs served as carriers for siRNA delivery. BSVs enhanced siRNA-mediated gene silencing in mouse liver and lung. As an alternative approach, we developed a novel gene transfection method in which the polyplexes were kept in contact with their deposition surface by thermoresponsive blocking of the SV. This strategy was more effective than reverse transfection and the conventional transfection methods in solution.  相似文献   

20.
The discovery of RNA interference has given a new lease on life to both the chemistry of oligonucleotides and chemical approaches for the intracellular delivery of nucleic acids. In particular, delivery of siRNA, whether in vitro for screening and target validation purposes or in humans as a new class of drugs, may revolutionize our approach to therapy. Their impact could equal that of the bioproduction and various uses of monoclonal antibodies today. Unfortunately, global pharmaceutical companies again seem to be waiting to buy the next Genentech or Genzyme of gene silencing rather than investing research and development into this promising area of research. Gene silencing encounters barriers similar to gene addition and hence may benefit from the extra decade of experience brought by gene therapy. "Chemical" transfection of cells in culture has become routine, and this Account discusses some of the reasons this success has not extended to nonviral gene therapy trials, most of which do not progress beyond the phase 2 stage. The author also discusses a (much debated) mechanism of nucleic acid cell entry and subsequent release of the polycationic particles into the cytoplasm. Both topics should be useful to those interested in delivery of siRNA. The move from gene therapy toward siRNA as an oligonucleotide-based therapy strategy provides a much wider range of druggable targets. Even though these molecules are a hundredfold smaller than a gene, they are delivered via similar cellular mechanisms. Their complexes with cationic polymers are less stable than those with a higher number of phosphate groups, which may be compensated by siRNA concatemerization or by chemical conjugation with the cationic carrier. Thus chemistry is again desperately needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号