首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There is considerable interest in drug discovery targeting the aggregation of α-synuclein (αSyn) since this molecular process is closely associated with Parkinson's disease. However, inhibiting αSyn aggregation remains a major challenge because of its highly dynamic nature which makes it difficult to form a stable binding complex with a drug molecule. Here, by exploiting Random non-standard Peptides Integrated Discovery (RaPID) system, we identified a macrocyclic peptide, BD1, that could interact with immobilized αSyn and inhibit the formation of fibrils. Furthermore, improving the solubility of BD1 suppresses the co-aggregation with αSyn fibrils while it kinetically inhibits more effectively without change in their morphology. We also revealed the molecular mechanism of kinetic inhibition, where peptides bind to fibril ends of αSyn, thereby preventing further growth of fibrils. These results suggest that our approach for generating non-standard macrocyclic peptides is a promising approach for developing potential therapeutics against neurodegeneration.  相似文献   

2.
Spontaneous aggregation of misfolded proteins typically results in the formation of morphologically and structurally different amyloid fibrils, protein aggregates that are strongly associated with various neurodegenerative disorders. Elucidation of the structural organization of amyloid aggregates is crucial to understanding their role in the onset and progression of these diseases. Using atomic force microscopy–infrared spectroscopy (AFM-IR), we investigated the structural organization of insulin fibrils. We found that insulin aggregation results in the formation of two structurally different fibril polymorphs. One polymorph has a β-sheet core surrounded by primarily unordered protein secondary structure. This polymorph has β-sheet-rich surface, whereas the surface of the other fibril polymorph is primarily composed of unordered protein. Using AFM-IR, we also revealed the structural organization of the insulin oligomers. Finally, we discovered a new pathway for amyloid fibril formation that is based on a fusion of several oligomers into a single fibril structure.  相似文献   

3.
[Figurre: see text]. Protein aggregation can be defined as the sacrifice of stabilizing intrachain contacts of the functional state that are replaced with interchain contacts to form non-functional states. The resulting aggregate morphologies range from amorphous structures without long-range order typical of nondisease proteins involved in inclusion bodies to highly structured fibril assemblies typical of amyloid disease proteins. In this Account, we describe the development and application of computational models for the investigation of nondisease and disease protein aggregation as illustrated for the proteins L and G and the Alzheimer's Abeta systems. In each case, we validate the models against relevant experimental observables and then expand on the experimental window to better elucidate the link between molecular properties and aggregation outcomes. Our studies show that each class of protein exhibits distinct aggregation mechanisms that are dependent on protein sequence, protein concentration, and solution conditions. Nondisease proteins can have native structural elements in the denatured state ensemble or rapidly form early folding intermediates, which offers avenues of protection against aggregation even at relatively high concentrations. The possibility that early folding intermediates may be evolutionarily selected for their protective role against unwanted aggregation could be a useful strategy for reengineering sequences to slow aggregation and increase folding yield in industrial protein production. The observed oligomeric aggregates that we see for nondisease proteins L and G may represent the nuclei for larger aggregates, not just for large amorphous inclusion bodies, but potentially as the seeds of ordered fibrillar aggregates, since most nondisease proteins can form amyloid fibrils under conditions that destabilize the native state. By contrast, amyloidogenic protein sequences such as Abeta 1-40,42 and the familial Alzheimer's disease (FAD) mutants favor aggregation into ordered fibrils once the free-energy barrier for forming a critical nucleus is crossed. However, the structural characteristics and oligomer size of the soluble nucleation species have yet to be determined experimentally for any disease peptide sequence, and the molecular mechanism of polymerization that eventually delineates a mature fibril is unknown. This is in part due to the limited experimental access to very low peptide concentrations that are required to characterize these early aggregation events, providing an opportunity for theoretical studies to bridge the gap between the monomer and fibril end points and to develop testable hypotheses. Our model shows that Abeta 1-40 requires as few as 6-10 monomer chains (depending on sequence) to begin manifesting the cross-beta order that is a signature of formation of amyloid filaments or fibrils assessed in dye-binding kinetic assays. The richness of the oligomeric structures and viable filament and fibril polymorphs that we observe may offer structural clues to disease virulence variations that are seen for the WT and hereditary mutants.  相似文献   

4.
Prion protein aggregation into amyloid fibrils is associated with the onset and progression of prion diseases—a group of neurodegenerative amyloidoses. The process of such aggregate formation is still not fully understood, especially regarding their polymorphism, an event where the same type of protein forms multiple, conformationally and morphologically distinct structures. Considering that such structural variations can greatly complicate the search for potential antiamyloid compounds, either by having specific propagation properties or stability, it is important to better understand this aggregation event. We have recently reported the ability of prion protein fibrils to obtain at least two distinct conformations under identical conditions, which raised the question if this occurrence is tied to only certain environmental conditions. In this work, we examined a large sample size of prion protein aggregation reactions under a range of temperatures and analyzed the resulting fibril dye-binding, secondary structure and morphological properties. We show that all temperature conditions lead to the formation of more than one fibril type and that this variability may depend on the state of the initial prion protein molecules.  相似文献   

5.
Abnormal protein aggregation in the brain is linked to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Recent studies revealed that the oligomeric form of aggregates is most likely the toxic species, and thus could be a good therapeutic target. To screen for potent inhibitors that can inhibit both oligomerisation and fibrillation of α-synuclein (α-syn), we systematically compared the antioligomeric and antifibrillar activities of eight compounds that were extracted from Chinese herbal medicines through three platforms that can monitor the formation of α-syn fibrils and oligomers in cell-free or cellular systems. Our results revealed that baicalein, a flavonoid extracted from the Chinese herbal medicine Scutellaria baicalensis Georgi ("huang qin" in Chinese), is a potent inhibitor of α-syn oligomerisation both in cell-free and cellular systems, and is also an effective inhibitor of α-syn fibrillation in cell-free systems. We further tested the protective effect of baicalein against α-syn-oligomer-induced toxicity in neuronal cells. Our data showed that baicalein inhibited the formation of α-syn oligomers in SH-SY5Y and Hela cells, and protected SH-SY5Y cells from α-syn-oligomer-induced toxicity. We also explored the effect of baicalein on amyloid-β peptide (Aβ) aggregation and toxicity. We found that baicalein can also inhibit Aβ fibrillation and oligomerisation, disaggregate pre-formed Aβ amyloid fibrils and prevent Aβ fibril-induced toxicity in PC12 cells. Our study indicates that baicalein is a good inhibitor of amyloid protein aggregation and toxicity. Given the role of these processes in neurodegenerative diseases such as AD and PD, our results suggest that baicalein has potential as a therapeutic agent for the treatment of these devastating disorders.  相似文献   

6.
The effect of the properties of a nanostructured gold surface (nano-Au surface) on the aggregation of Amyloid ??(1?C40) (A??40) was investigated. A nano-Au surface, in the form of immobilized nanoparticles, was prepared by using a thermal evaporator, resulting in the formation of nanosized clusters with sizes less than 10 nm. When A??40 was incubated with the nano-Au surface, abnormally large-sized tubular aggregates were formed on the surface and typical fibril formation was suppressed in the solution. This abnormally large tubular structure represents a novel type of A??40 aggregate. In the absence of the nano-Au surface, the diameters of the A??40 fibrils were less than 10 nm. However, the height of the tubular aggregates formed on a nano-Au surface was 80?C100 nm. Such large-sized aggregates of A??40 have not been reported in previous studies dealing with interactions of suspended nanoparticles with proteins. This can be attributed to differences in the aggregation mechanism between immobilized and suspended nanoparticles. The formation of A??40 aggregates by nano-Au surface will provide the possible mechanism for abnormal fibril formation.  相似文献   

7.
The accumulation of protein aggregates in the brain is a defining feature of a number of neurodegenerative diseases. Though diseases vary in the composition of aggregated proteins (amyloid-β and tau are primarily implicated in Alzheimer's disease, α-synuclein is the primary protein aggregate in Parkinson's disease, etc.), similarities in the formation of soluble intermediate aggregates, some of which go on to deposit in stable fibrillar structures, suggests that the protein sequence may be far less important than the aggregate conformation to toxicity and onset of disease. Growing evidence suggests that intermediate or independently formed oligomeric aggregates are more highly toxic than fibrils, and are more efficient seeds for the aggregation of endogenous protein. Furthermore, the overlap of different aggregated proteins in disease, as well as the ability of amyloid oligomers to cross-seed the aggregation of each other, suggests that synergistic interactions between varying aggregant proteins is a critical component in neurodegeneration. The progression of aggregates along defined pathways throughout the brain is crucial to the spread of disease and likely depends upon the transport of aggregates from affected to unaffected brain regions. Thus, the presence of oligomeric seeds that more efficiently seed the aggregation of homologous and diverse proteins may underlie neurodegeneration.  相似文献   

8.
The aggregation of α-synuclein (αS), which is implicated in the pathology of Parkinson's disease, produces fibrils in which layers of parallel, in-register β-sheet-loop-β-sheets are formed. The effects of sequence variation in the loop-forming region (referred to as the linker region) on αS aggregation have yet to be systematically studied. In the study described here, we created and characterized αS variants containing mutations in the linker regions. Our results indicate that although the physicochemical properties of the linker region, evaluated based on an intrinsic property of a single amino acid, still play a significant role in aggregation, additional factors can also determine aggregation of αS linker mutants. Our analyses suggest that these factors include a pairwise potential for parallel in-register β-sheet formation. A linker variant displaying significantly reduced self-aggregation interfered with αS aggregation by inhibiting the conversion of αS soluble species to αS insoluble fibrils. We anticipate that linker mutations could serve as a novel method of creating αS variants that are aggregation-defective and/or inhibit αS aggregation.  相似文献   

9.
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.  相似文献   

10.
11.
Dr. Debabrata Maity 《ChemMedChem》2023,18(2):e202200499
Aberrant protein aggregation leads to the formation of amyloid fibrils. This phenomenon is linked to the development of more than 40 irremediable diseases such as Alzheimer's disease, Parkinson's disease, type 2 diabetes, and cancer. Plenty of research efforts have been given to understanding the underlying mechanism of protein aggregation, associated toxicity, and the development of amyloid inhibitors. Recently, the peptidomimetic approach has emerged as a potential tool to modulate several protein-protein interactions (PPIs). In this review, we discussed selected peptidomimetic-based approaches for the modulation of important amyloid proteins (Islet Amyloid Polypeptide, Amyloid Beta, α-synuclein, mutant p53, and insulin) aggregation. This approach holds a powerful platform for creating an essential stepping stone for the vital development of anti-amyloid therapeutic agents.  相似文献   

12.
Defective protein folding and accumulation of misfolded proteins is associated with neurodegenerative, cardiovascular, secretory, and metabolic disorders. Efforts are being made to identify small-molecule modulators or structural-correctors for conformationally destabilized proteins implicated in various protein aggregation diseases. Using a metastable-reporter-based primary screen, we evaluated pharmacological chaperone activity of a diverse class of natural products. We found that a flavonoid glycoside ( C-10 , chrysoeriol-7-O-β-D-glucopyranoside) stabilizes metastable proteins, prevents its aggregation, and remodels the oligomers into protease-sensitive species. Data was corroborated with additional secondary screen with disease-specific pathogenic protein. In vitro and cell-based experiments showed that C-10 inhibits α-synuclein aggregation which is implicated in synucleinopathies-related neurodegeneration. C-10 interferes in its structural transition into β-sheeted fibrils and mitigates α-synuclein aggregation-associated cytotoxic effects. Computational modeling suggests that C-10 binds to unique sites in α-synuclein which may interfere in its aggregation amplification. These findings open an avenue for comprehensive SAR development for flavonoid glycosides as pharmacological chaperones for metastable and aggregation-prone proteins implicated in protein conformational diseases.  相似文献   

13.
Structural characterization of aggregates and fibrils of the Aβ protein is pivotal to the molecular-level elucidation of Alzheimer's disease (AD). AFM-IR spectroscopy provides nanoscale resolution, and thus allows the interrogation of individual aggregates and fibrils. During aggregation of Aβ, we observed mainly disordered Aβ at t=15 min, but substantial structural diversity including the co-existence of parallel and antiparallel β-sheets within a large amorphous aggregate at t=2 hours, while fibrils exhibited the expected signature of parallel β-sheets at t=1 week. The resonance observed for parallel β-sheets at t=2 hours coincides with that observed for fibrils (at 1634 cm−1), thus indicating that fibril-like species exist within the large aggregates. Therefore, nucleation might occur within such species, in analogy to current theories of protein crystallization in which nucleation occurs within large protein clusters. Cu2+ perturbs Aβ aggregation, catalysing rapid formation of amorphous aggregates with diverse secondary structure, but inhibiting fibril growth.  相似文献   

14.
Post-translational modifications (PTMs) can affect the normal function and pathology of α-synuclein (αS), an amyloid-fibril-forming protein linked to Parkinson's disease. Phosphorylation of αS Tyr39 has recently been found to display a dose-dependent effect on fibril formation kinetics and to alter the morphology of the fibrils. Existing methods to access site-specifically phosphorylated αS for biochemical studies include total or semi-synthesis by native chemical ligation (NCL) as well as chemoenzymatic methods to phosphorylate peptides, followed by NCL. Here, we investigated a streamlined method to produce large quantities of phosphorylated αS by co-expressing a kinase with a protein fragment in Escherichia coli. We also introduced the use of methyl thioglycolate (MTG) to enable one-pot NCL and desulfurization. We compare our optimized methods to previous reports and show that we can achieve the highest yields of site-specifically phosphorylated protein through chemoenzymatic methods using MTG, and that our strategy is uniquely well suited to producing 15N-labeled, phosphorylated protein for NMR studies.  相似文献   

15.
Amyloids are highly organized protein filaments, rich in β-sheet secondary structures that self-assemble to form dense plaques in brain tissues affected by severe neurodegenerative disorders (e.g. Alzheimer's Disease). Identified as natural functional materials in bacteria, in addition to their remarkable mechanical properties, amyloids have also been proposed as a platform for novel biomaterials in nanotechnology applications including nanowires, liquid crystals, scaffolds and thin films. Despite recent progress in understanding amyloid structure and behavior, the latent self-assembly mechanism and the underlying adhesion forces that drive the aggregation process remain poorly understood. On the basis of previous full atomistic simulations, here we report a simple coarse-grain model to analyze the competition between adhesive forces and elastic deformation of amyloid fibrils. We use simple model system to investigate self-assembly mechanisms of fibrils, focused on the formation of self-folded nanorackets and nanorings, and thereby address a critical issue in linking the biochemical (Angstrom) to micrometre scales relevant for larger-scale states of functional amyloid materials. We investigate the effect of varying the interfibril adhesion energy on the structure and stability of self-folded nanorackets and nanorings and demonstrate that these aggregated amyloid fibrils are stable in such states even when the fibril-fibril interaction is relatively weak, given that the constituting amyloid fibril length exceeds a critical fibril length-scale of several hundred nanometres. We further present a simple approach to directly determine the interfibril adhesion strength from geometric measures. In addition to providing insight into the physics of aggregation of amyloid fibrils our model enables the analysis of large-scale amyloid plaques and presents a new method for the estimation and engineering of the adhesive forces responsible of the self-assembly process of amyloid nanostructures, filling a gap that previously existed between full atomistic simulations of primarily ultra-short fibrils and much larger micrometre-scale amyloid aggregates. Via direct simulation of large-scale amyloid aggregates consisting of hundreds of fibrils we demonstrate that the fibril length has a profound impact on their structure and mechanical properties, where the critical fibril length-scale derived from our analysis of self-folded nanorackets and nanorings defines the structure of amyloid aggregates. A multi-scale modeling approach as used here, bridging the scales from Angstroms to micrometres, opens a wide range of possible nanotechnology applications by presenting a holistic framework that balances mechanical properties of individual fibrils, hierarchical self-assembly, and the adhesive forces determining their stability to facilitate the design of de novo amyloid materials.  相似文献   

16.
The formation of amyloid fibril plaques in the brain creates inflammation and neuron death. This process is observed in neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases. Alpha-synuclein is the main protein found in neuronal inclusions of patients who have suffered from Parkinson’s disease. S100A9 is a calcium-binding, pro-inflammation protein, which is also found in such amyloid plaques. To understand the influence of S100A9 on the aggregation of α-synuclein, we analyzed their co-aggregation kinetics and the resulting amyloid fibril structure by Fourier-transform infrared spectroscopy and atomic force microscopy. We found that the presence of S100A9 alters the aggregation kinetics of α-synuclein and stabilizes the formation of a particular amyloid fibril structure. We also show that the solution’s ionic strength influences the interplay between S100A9 and α-synuclein, stabilizing a different structure of α-synuclein fibrils.  相似文献   

17.
A critical step in Parkinson's disease (PD) is the formation of toxic α-synuclein oligomers (αSOs). In vitro αSOs are formed by self-assembly of α-synuclein at high concentrations, or by the addition of, for example, dopamine, lipids, ethanol, or metal ions. These αSOs are structurally distinct from the unfolded monomer and aggregated β-sheet fibrils. Nevertheless, the literature reports a wide variety of αSO shapes, sizes, and proposed toxic mechanisms. This heterogeneous character makes it difficult to form a unifying picture. Here, we present an overview of the different αSO species made in vitro, providing a tool for better comparison of different protocols and the ensuing αSOs, and emphasizing the striking versatility in the appearance and properties of these critical species. We also summarize what is known of the biological activities of different αSOs. Despite a large and increasing level of insight into αSO effects in vitro, we still lack strong insight into the structures and sizes of αSO species formed in vivo. Once this is established, it may be possible to generate more uniform protocols that could stimulate further efforts to develop viable PD biomarker assays and therapies.  相似文献   

18.
Amyloid fibril formation is a process that represents an essential feature of the chemistry of proteins and plays a central role in human pathology and the biology of living organisms. In this Account, we shall describe some of the recent results on the sequence and structural determinants of protein aggregation. We shall describe the factors that govern aggregation of unfolded peptides and proteins. We shall then try to summarize the factors that pertain to the aggregation of partially structured states and will show that even fully folded states of proteins have an ability to aggregate into at least early oligomers with no need to undergo substantial conformational changes.  相似文献   

19.
Protein misfolding is related to some fatal diseases including Alzheimer's disease (AD). Amyloid beta-peptide (Abeta) generated from amyloid precursor protein can aggregate into amyloid fibrils, which are known to be a major component of Abeta deposits (senile plaques). The fibril formation of Abeta is typical of a nucleation-dependent process through self-recognition. Moreover, during fibrillization, several metastable intermediates such as soluble oligomers, including Abeta-derived diffusible ligands (ADDLs) and Abeta*56, are produced, which are thought to be the most toxic species to neuronal cells. Therefore, construction of molecules that decrease the Abeta aggregates, including soluble oligomers, protofibrils, and amyloid fibrils, might further our understanding of the mechanism(s) behind fibril formation and enable targeted drug discovery against AD. To this aim, various peptides and peptide derivatives have been constructed using the "Abeta binding element" based on the structural models of Abeta amyloid fibrils and the mechanisms of self-assembly. The central hydrophobic amino acid sequence, LVFF, of Abeta is a key sequence to self-assemble into amyloid fibrils. By combination of this core sequence with a hydrophobic or hydrophilic moiety, such as cholic acid or aminoethoxy ethoxy acetic acid units, respectively, good inhibitors of Abeta aggregation can be designed and synthesized. A peptide, LF, consisting of the sequence Ac-KQKLLLFLEE-NH 2, was designed based on the core sequence of Abeta but with a simplified amino acid sequence. The LF peptide can form amyloid-like fibrils that efficiently coassemble with mature Abeta1-42 fibrils. The LF peptide was also observed to immediately transform the soluble oligomers of Abeta1-42, which are thought to pose toxicity in AD, into amyloid-like fibrils. On the other hand, two Abeta-like beta-strands with a parallel orientation were embedded in green fluorescent protein (GFP), comprised of a beta-barrel structure, to make pseudo-Abeta beta-sheets on its surface. The GFP variant P13H binds to Abeta1-42 and inhibits Abeta1-42 oligomerization effectively in a substoichiometric condition. Thus, molecules capable of binding to Abeta can be designed based on structural similarities with the Abeta molecule. The peptide and protein mimetics based on the structural features of Abeta might lead to the development of drug candidates against AD.  相似文献   

20.
Parkinson’s disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid–protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号