首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia. Metabolic disorders including obesity and type 2 diabetes mellitus (T2DM) may stimulate amyloid β (Aβ) aggregate formation. AD, obesity, and T2DM share similar features such as chronic inflammation, increased oxidative stress, insulin resistance, and impaired energy metabolism. Adiposity is associated with the pro-inflammatory phenotype. Adiposity-related inflammatory factors lead to the formation of inflammasome complexes, which are responsible for the activation, maturation, and release of the pro-inflammatory cytokines including interleukin-1β (IL-1β) and interleukin-18 (IL-18). Activation of the inflammasome complex, particularly NLRP3, has a crucial role in obesity-induced inflammation, insulin resistance, and T2DM. The abnormal activation of the NLRP3 signaling pathway influences neuroinflammatory processes. NLRP3/IL-1β signaling could underlie the association between adiposity and cognitive impairment in humans. The review includes a broadened approach to the role of obesity-related diseases (obesity, low-grade chronic inflammation, type 2 diabetes, insulin resistance, and enhanced NLRP3 activity) in AD. Moreover, we also discuss the mechanisms by which the NLRP3 activation potentially links inflammation, peripheral and central insulin resistance, and metabolic changes with AD.  相似文献   

2.
Low-grade chronic inflammation plays a pivotal role in the pathogenesis of insulin resistance (IR), and skeletal muscle has a central role in this condition. NLRP3 inflammasome activation pathways promote low-grade chronic inflammation in several tissues. However, a direct link between IR and NLRP3 inflammasome activation in skeletal muscle has not been reported. Here, we evaluated the NLRP3 inflammasome components and their role in GLUT4 translocation impairment in skeletal muscle during IR. Male C57BL/6J mice were fed with a normal control diet (NCD) or high-fat diet (HFD) for 8 weeks. The protein levels of NLRP3, ASC, caspase-1, gasdermin-D (GSDMD), and interleukin (IL)-1β were measured in both homogenized and isolated fibers from the flexor digitorum brevis (FDB) or soleus muscle. GLUT4 translocation was determined through GLUT4myc-eGFP electroporation of the FBD muscle. Our results, obtained using immunofluorescence, showed that adult skeletal muscle expresses the inflammasome components. In the FDB and soleus muscles, homogenates from HFD-fed mice, we found increased protein levels of NLRP3 and ASC, higher activation of caspase-1, and elevated IL-1β in its mature form, compared to NCD-fed mice. Moreover, GSDMD, a protein that mediates IL-1β secretion, was found to be increased in HFD-fed-mice muscles. Interestingly, MCC950, a specific pharmacological NLRP3 inflammasome inhibitor, promoted GLUT4 translocation in fibers isolated from the FDB muscle of NCD- and HFD-fed mice. In conclusion, we found increased NLRP3 inflammasome components in adult skeletal muscle of obese insulin-resistant animals, which might contribute to the low-grade chronic metabolic inflammation of skeletal muscle and IR development.  相似文献   

3.
NLRP3 is an important pattern recognition receptor in the innate immune system, and its activation induces a large number of pro-inflammatory cytokines, IL-1β and IL-18 which are involved in the development of various diseases. In recent years, it has been suggested that mitochondria are the platform for NLRP3 inflammasome activation. Additionally, exercise is considered as an important intervention strategy to mediate the innate immune responses. Generally, chronic moderate-intensity endurance training, resistance training and high-intensity interval training inhibit NLRP3 inflammasome activation in response to various pathological factors. In contrast, acute exercise activates NLRP3 inflammasome. However, the mechanisms by which exercise regulates NLRP3 inflammasome activation are largely unclear. Therefore, the mechanism of NLRP3 inflammasome activation is discussed mainly from the perspective of mitochondria in this review. Moreover, the effect and potential mechanism of exercise on NLRP3 inflammasome are explored, hoping to provide new target for relevant research.  相似文献   

4.
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.  相似文献   

5.
Chronic inflammation has been associated with several chronic diseases, such as age-related macular degeneration (AMD). The NLRP3 inflammasome is a central proinflammatory signaling complex that triggers caspase-1 activation leading to the maturation of IL-1β. We have previously shown that the inhibition of the chaperone protein, Hsp90, prevents NLRP3 activation in human retinal pigment epithelial (RPE) cells; these are cells which play a central role in the pathogenesis of AMD. In that study, we used a well-known Hsp90 inhibitor geldanamycin, but it cannot be used as a therapy due to its adverse effects, including ocular toxicity. Here, we have tested the effects of a novel Hsp90 inhibitor, TAS-116, on NLRP3 activation using geldanamycin as a reference compound. Using our existing protocol, inflammasome activation was induced in IL-1α-primed ARPE-19 cells with the proteasome and autophagy inhibitors MG-132 and bafilomycin A1, respectively. Intracellular caspase-1 activity was determined using a commercial caspase-1 activity kit and the FLICA assay. The levels of IL-1β were measured from cell culture medium samples by ELISA. Cell viability was monitored by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) measurements. Our findings show that TAS-116 could prevent the activation of caspase-1, subsequently reducing the release of mature IL-1β. TAS-116 has a better in vitro therapeutic index than geldanamycin. In summary, TAS-116 appears to be a well-tolerated Hsp90 inhibitor, with the capability to prevent the activation of the NLRP3 inflammasome in human RPE cells.  相似文献   

6.
Among multiple mechanisms, low-grade inflammation is critical for the development of insulin resistance as a feature of type 2 diabetes. The nucleotide-binding oligomerization domain-like receptor family (NOD-like) pyrin domain containing 3 (NLRP3) inflammasome has been linked to the development of insulin resistance in various tissues; however, its role in the development of insulin resistance in the skeletal muscle has not been explored in depth. Currently, there is limited evidence that supports the pathological role of NLRP3 inflammasome activation in glucose handling in the skeletal muscle of obese individuals. Here, we have centered our focus on insulin signaling in skeletal muscle, which is the main site of postprandial glucose disposal in humans. We discuss the current evidence showing that the NLRP3 inflammasome disturbs glucose homeostasis. We also review how NLRP3-associated interleukin and its gasdermin D-mediated efflux could affect insulin-dependent intracellular pathways. Finally, we address pharmacological NLRP3 inhibitors that may have a therapeutical use in obesity-related metabolic alterations.  相似文献   

7.
8.
Dexamethasone (Dexa), frequently used as an anti-inflammatory agent, paradoxically leads to muscle inflammation and muscle atrophy. Receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) lead to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome formation through nuclear factor-κB (NF-κB) upregulation. NLRP3 inflammasome results in pyroptosis and is associated with the Murf-1 and atrogin-1 upregulation involved in protein degradation and muscle atrophy. The effects of Ecklonia cava extract (ECE) and dieckol (DK) on attenuating Dexa-induced muscle atrophy were evaluated by decreasing NLRP3 inflammasome formation in the muscles of Dexa-treated animals. The binding of AGE or high mobility group protein 1 to RAGE or TLR4 was increased by Dexa but significantly decreased by ECE or DK. The downstream signaling pathways of RAGE (c-Jun N-terminal kinase or p38) were increased by Dexa but decreased by ECE or DK. NF-κB, downstream of RAGE or TLR4, was increased by Dexa but decreased by ECE or DK. The NLRP3 inflammasome component (NLRP3 and apoptosis-associated speck-like), cleaved caspase -1, and cleaved gasdermin D, markers of pyroptosis, were increased by Dexa but decreased by ECE and DK. Interleukin-1β/Murf-1/atrogin-1 expression was increased by Dexa but restored by ECE or DK. The mean muscle fiber cross-sectional area and grip strength were decreased by Dexa but restored by ECE or DK. In conclusion, ECE or DK attenuated Dexa-induced muscle atrophy by decreasing NLRP3 inflammasome formation and pyroptosis.  相似文献   

9.
The NLR pyrin domain containing 3 (NLRP3) inflammasome plays a crucial role in lung disease and may have a similar role in upper respiratory tract inflammation. We therefore constructed a C57BL/6 mouse model of acute rhinosinusitis induced by Staphylococcus aureus and investigated the role of the NLRP3 inflammasome in this model. Mice were classified as non-inoculated group (group A) and inoculated groups (groups B, C, D and E, sacrificed 1, 3, 7 and 14 days after inoculation, respectively). Hematoxylin-eosin staining showed that each group had inflammatory cell infiltration, except group A. The damage of the nasal mucosa was aggravated gradually over time. Western blot and immunofluorescence showed that the structural proteins of the NLRP3 inflammasome (NLRP3, ASC (apoptosis-associated speck-like protein containing CARD), procaspase-1) in groups B, C, D and E were increased gradually. But they were reduced in group B compared with group A, except for NLRP3. Western blot showed that the cleavage fragment of procaspase-1, p20 in groups B, C, D and E was increased gradually. Real-time PCR showed that the corresponding mRNAs of the structural proteins were changed the same as their proteins. IL-1β mRNA and mature IL-1β protein were increased gradually in groups A, B, C, D and E. These results indicate that NLRP3 inflammasome activation was associated with the acute rhinosinusitis, and that there was a positive correlation between the expression level of the NLRP3 inflammasome and the severity of acute rhinosinusitis.  相似文献   

10.
We aimed to investigate the effect of acute glucose shift on the activation of the NLRP3 inflammasome, IL-1β secretion, and underlying signaling pathways in THP-1 cells. THP-1 cells were divided into four groups and exposed to the following glucose concentrations for 24 h: constant normal glucose (NG, 5.5 mM), constant high glucose (HG, 25 mM), normal to high glucose shift (NG-to-HG, 5.5 to 25 mM), and high to normal glucose shift (HG-to-NG, 25 to 5.5 mM). Cell viability, oxidative stress, and the levels of NLRP3 inflammasome components were assessed. Both directions of the acute glucose shift increased the activation of the NLRP3 inflammasome, generation of reactive oxygen species (ROS), and expression of phosphorylated p38 MAPK, JNK, and NF-κB compared with either constant NG or HG. Treatment with N-acetylcysteine, a pharmacological antioxidant, inhibited the acute glucose shift-induced generation of ROS, activation of NLRP3 inflammasome, and upregulation of MAPK-NF-κB. Further analysis using inhibitors of p38 MAPK, JNK, and NF-κB indicated that acute glucose shifts promoted IL-1β secretion by activating the signaling pathway in a ROS-MAPK-NF-κB-NLRP3 inflammasome in THP-1 cells. These findings suggested that acute changes in glucose concentration might cause monocyte inflammation, which is associated with diabetic complications.  相似文献   

11.
In response to diverse pathogenic and danger signals, the cytosolic activation of the NLRP3 (NOD-, LRR-, and pyrin domain-containing (3)) inflammasome complex is a critical event in the maturation and release of some inflammatory cytokines in the state of an inflammatory response. After activation of the NLRP3 inflammasome, a series of cellular events occurs, including caspase 1-mediated proteolytic cleavage and maturation of the IL-1β and IL-18, followed by pyroptotic cell death. Therefore, the NLRP3 inflammasome has become a prime target for the resolution of many inflammatory disorders. Since NLRP3 inflammasome activation can be triggered by a wide range of stimuli and the activation process occurs in a complex, it is difficult to target the NLRP3 inflammasome. During the activation process, various post-translational modifications (PTM) of the NLRP3 protein are required to form a complex with other components. The regulation of ubiquitination and deubiquitination of NLRP3 has emerged as a potential therapeutic target for NLRP3 inflammasome-associated inflammatory disorders. In this review, we discuss the ubiquitination and deubiquitination system for NLRP3 inflammasome activation and the inhibitors that can be used as potential therapeutic agents to modulate the activation of the NLRP3 inflammasome.  相似文献   

12.
Inflammation is a key underlying factor of age-related macular degeneration (AMD) and inflammasome activation has been linked to disease development. Induced pluripotent stem-cell-derived retinal pigment epithelial cells (iPSC-RPE) are an attractive novel model system that can help to further elucidate disease pathways of this complex disease. Here, we analyzed the effect of dysfunctional protein clearance on inflammation and inflammasome activation in iPSC-RPE cells generated from a patient suffering from age-related macular degeneration (AMD) and an age-matched control. We primed iPSC-RPE cells with IL-1α and then inhibited both proteasomal degradation and autophagic clearance using MG-132 and bafilomycin A1, respectively, causing inflammasome activation. Subsequently, we determined cell viability, analyzed the expression levels of inflammasome-related genes using a PCR array, and measured the levels of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and MCP-1 secreted into the medium. Cell treatments modified the expression of 48 inflammasome-related genes and increased the secretion of mature IL-1β, while reducing the levels of IL-6 and MCP-1. Interestingly, iPSC-RPE from an AMD donor secreted more IL-1β and expressed more Hsp90 prior to the inhibition of protein clearance, while MCP-1 and IL-6 were reduced at both protein and mRNA levels. Overall, our results suggest that cellular clearance mechanisms might already be dysfunctional, and the inflammasome activated, in cells with a disease origin.  相似文献   

13.
Amyloid beta (Aβ)-induced abnormal neuroinflammation is recognized as a major pathological feature of Alzheimer’s disease (AD), which results in memory impairment. Research exploring low-grade systemic inflammation and its impact on the development and progression of neurodegenerative disease has increased. A particular research focus has been whether systemic inflammation arises only as a secondary effect of disease, or it is also a cause of pathology. The inflammasomes, and more specifically the NLRP3 inflammasome, are crucial components of the innate immune system and are usually activated in response to infection or tissue damage. Although inflammasome activation plays critical roles against various pathogens in host defense, overactivation of inflammasome contributes to the pathogenesis of inflammatory diseases, including acute central nervous system (CNS) injuries and chronic neurodegenerative diseases, such as AD. This review summarizes the current literature on the role of the NLRP3 inflammasome in the pathogenesis of AD, and its involvement in infections, particularly SARS-CoV-2. NLRP3 might represent the crossroad between the hypothesized neurodegeneration and the primary COVID-19 infection.  相似文献   

14.
15.
This study was undertaken to evaluate the connexin hemichannel blocker tonabersat for the inhibition of inflammasome activation and use as a potential treatment for diabetic retinopathy. Human retinal pigment epithelial cells (ARPE-19) were stimulated with hyperglycemia and the inflammatory cytokines IL-1β and TNFα in order to mimic diabetic retinopathy molecular signs in vitro. Immunohistochemistry was used to evaluate the effect of tonabersat treatment on NLRP3, NLRP1, and cleaved caspase-1 expression and distribution. A Luminex cytokine release assay was performed to determine whether tonabersat affected proinflammatory cytokine release. NLRP1 was not activated in ARPE-19 cells, and IL-18 was not produced under disease conditions. However, NLRP3 and cleaved caspase-1 complex formation increased with hyperglycemia and cytokine challenge but was inhibited by tonabersat treatment. It also prevented the release of proinflammatory cytokines IL-1β, VEGF, and IL-6. Tonabersat therefore has the potential to reduce inflammasome-mediated inflammation in diabetic retinopathy.  相似文献   

16.
Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.  相似文献   

17.
Glucocorticoids provide indispensable anti-inflammatory therapies. However, metabolic adverse effects including muscle wasting restrict their use. The enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) modulates peripheral glucocorticoid responses through pre-receptor metabolism. This study investigates how 11β-HSD1 influences skeletal muscle responses to glucocorticoid therapy for chronic inflammation. We assessed human skeletal muscle biopsies from patients with rheumatoid arthritis and osteoarthritis for 11β-HSD1 activity ex vivo. Using the TNF-α-transgenic mouse model (TNF-tg) of chronic inflammation, we examined the effects of corticosterone treatment and 11β-HSD1 global knock-out (11βKO) on skeletal muscle, measuring anti-inflammatory gene expression, muscle weights, fiber size distribution, and catabolic pathways. Muscle 11β-HSD1 activity was elevated in patients with rheumatoid arthritis and correlated with inflammation markers. In murine skeletal muscle, glucocorticoid administration suppressed IL6 expression in TNF-tg mice but not in TNF-tg11βKO mice. TNF-tg mice exhibited reductions in muscle weight and fiber size with glucocorticoid therapy. In contrast, TNF-tg11βKO mice were protected against glucocorticoid-induced muscle atrophy. Glucocorticoid-mediated activation of catabolic mediators (FoxO1, Trim63) was also diminished in TNF-tg11βKO compared to TNF-tg mice. In summary, 11β-HSD1 knock-out prevents muscle atrophy associated with glucocorticoid therapy in a model of chronic inflammation. Targeting 11β-HSD1 may offer a strategy to refine the safety of glucocorticoids.  相似文献   

18.
Lysophosphatidic acid receptor 1 (LPA1) contributes to brain injury following transient focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain injury associated with LPA1 following ischemic challenge with transient middle cerebral artery occlusion (tMCAO). Suppressing LPA1 activity by its antagonist attenuated NLRP3 upregulation in the penumbra and ischemic core regions, particularly in ionized calcium-binding adapter molecule 1 (Iba1)-expressing cells like macrophages of mouse after tMCAO challenge. It also suppressed NLRP3 inflammasome activation, such as caspase-1 activation, interleukin 1β (IL-1β) maturation, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck formation, in a post-ischemic brain. The role of LPA1 in NLRP3 inflammasome activation was confirmed in vitro using lipopolysaccharide-primed bone marrow-derived macrophages, followed by LPA exposure. Suppressing LPA1 activity by either pharmacological antagonism or genetic knockdown attenuated NLRP3 upregulation, caspase-1 activation, IL-1β maturation, and IL-1β secretion in these cells. Furthermore, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 were found to be LPA1-dependent effector pathways in these cells. Collectively, results of the current study first demonstrate that LPA1 could contribute to ischemic brain injury by activating NLRP3 inflammasome with underlying effector mechanisms.  相似文献   

19.
Dietary fat sources may differentially affect the development of inflammation in insulin-sensitive tissues during chronic overfeeding. Considering the anti-inflammatory properties of ω-3 fatty acids, this study aimed to compare the effects of chronic high-fish oil and high-lard diets on obesity-related inflammation by evaluating serum and tissue adipokine levels and histological features in insulin-sensitive tissues (white adipose tissue, skeletal muscle and liver). As expected, a high-lard diet induced systemic and peripheral inflammation and insulin resistance. Conversely, compared with a high-lard diet, a high-fish oil diet resulted in a lower degree of systemic inflammation and insulin resistance that were associated with a lower adipocyte diameter as well as lower immunoreactivity for transforming growth factor β 1 (TGFβ1) in white adipose tissue. A high-fish oil diet also resulted in a lower ectopic lipid depot, inflammation degree and insulin resistance in the skeletal muscle and liver. Moreover, a high-fish oil diet attenuated hepatic stellate cell activation and fibrogenesis in the liver, as indicated by the smooth muscle α-actin (α-SMA) and TGFβ1 levels. The replacement of lard (saturated fatty acids) with fish oil (ω-3 fatty acids) in chronic high-fat feeding attenuated the development of systemic and tissue inflammation.  相似文献   

20.
Emodin, an active constituent of oriental herbs, is widely used to treat allergy, inflammation, and other symptoms. This study provides the scientific basis for the anti-inflammasome effects of emodin on both in vitro and in vivo experimental models. Bone marrow-derived macrophages were used to study the effects of emodin on inflammasome activation by using inflammasome inducers such as ATP, nigericin, and silica crystals. The lipopolysaccharide (LPS)-induced endotoxin shock model was employed to study the effect of emodin on in vivo efficacy. Emodin treatment attenuated interleukin (IL)-1β secretion via the inhibition of NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation induced by ATP, nigericin, and silica crystals. Further, emodin ameliorated the severity of NLRP3 inflammasome-mediated symptoms in LPS-induced endotoxin mouse models. This study is the first to reveal mechanism-based evidence, especially with respect to regulation of inflammasome activation, substantiating traditional claims of emodin in the treatment of inflammation-related disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号