首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
微生物燃料电池在废水处理中的应用研究进展   总被引:1,自引:0,他引:1  
微生物燃料电池可以同时进行废水处理和生物发电,开启了废水处理产生清洁新能源的新途径。该文简要介绍了微生物燃料电池的发展历史,重点阐述了无介体微生物燃料电池和无膜微生物燃料电池在废水处理中的应用,概括了微生物燃料电池同步废水处理中存在的问题和工作方向,分析了利用MFC进行废水处理同时生物发电的应用前景。  相似文献   

2.
夏函青  伍永钢  江文亭  付成林 《化工进展》2019,38(12):5548-5556
人工湿地-微生物燃料电池耦合系统是一种新型生物电化学工艺。在该系统中,人工湿地为微生物燃料电池提供所需的氧化还原梯度和化学能,而微生物燃料电池可以提高人工湿地的处理效能并通过产电的方式回收能源,目前研究主要集中在水处理方面。本文结合近几年人工湿地-微生物燃料电池耦合系统的发展,从系统构建和系统性能的影响因素两个方面综述了人工湿地-微生物燃料电池耦合系统的研究现状,其中影响因素包括系统的组成要素(湿地植物、电极材料、基质材料和微生物)和系统运行参数(有机负荷和废水成分、水力停留时间、溶解氧和进水方式)两个方面。最后提出了人工湿地-微生物燃料电池耦合系统需要解决的主要问题:提高系统的库仑效率,进一步降低构建成本,提高系统去污及产电的综合性能,使该系统最终实现产业化。  相似文献   

3.
介绍了碳纳米管、石墨烯及二氧化钛等新型复合纳米材料的特性和结构,简述了新型复合纳米材料部分制备方法。通过分析不同材料作为微生物燃料电池电极的性能,对未来微生物燃料电池电极材料提出展望。认为微生物燃料电池是一种新兴的废水处理与产电技术,完善电极材料的设计及制备是提高其性能最有效的方法之一。指出新兴复合纳米材料在微生物燃料电池中的方向应更具有针对性的水质,今后的发展方向和研究重点是微生物燃料电池的规模化、复合纳米材料的经济性、稳定性以及生物相容性等。  相似文献   

4.
微生物燃料电池是将废水中有机物的化学能转化为电能,在去除污染物的同时将产生的电能回收,实现了能量转化。本文系统介绍了微生物燃料电池的研究进展,在对微生物燃料电池的产电微生物、电极材料、微生物燃料电池的放大、微生物燃料电池的实际应用等方面总结的基础上,指出了微生物燃料电池研究的发展方向,其中筛选改造产电微生物对不同底物的耐受性和适应性、开发廉价高效的电极材料、构造大型微生物燃料电池堆以及微生物电化学物质合成等是未来研究的重点。  相似文献   

5.
微生物燃料电池阳极材料的修饰研究进展   总被引:1,自引:0,他引:1  
简要介绍了微生物燃料电池以及微生物燃料电池阳极材料,分别从碳纳米管、导电聚合物、石墨烯、金属及金属离子、中介体以及复合材料等方面介绍了目前微生物燃料电池阳极材料修饰的研究进展,最后展望了微生物燃料电池的应用前景。  相似文献   

6.
微生物燃料电池是利用电化学技术将微生物代谢产生的能量转化为电能并同时降解环境污染物的一种理想发电装置。总结了国内外研究不多的利用半导体材料的阴极将光能引入到微生物燃料电池体系的研究,重点对其光催化微生物燃料电池的机理、光电协同产电的技术特点、目前在污染物去除方面的应用进行总结,对其发展的方向及在废水处理方面的应用进行展望。  相似文献   

7.
亓凤  吴汝林  WU Ru-lin 《江苏化工》2006,34(26):12-14,19
对生物催化剂在环境保护中的应用进行了阐述。具体描述了生物除污和生物产能两个方面。其中前者包括微生物的生物除污和酶生物除污,后者包括生产生物柴油、生物乙醇、生物氢和生物燃料电池。  相似文献   

8.
生物催化在环保中的应用进展   总被引:1,自引:0,他引:1  
主要对生物催化剂在环境保护中的应用进行了阐述。具体描述了生物除污和生物产能2个方面。其中,前者包括微生物的除污和酶生物除污,后者包括生物柴油、生物乙醇、生物氢和生物燃料电池的生产。  相似文献   

9.
微生物燃料电池的研究应用进展   总被引:2,自引:0,他引:2  
微生物燃料电池是利用微生物作为催化剂,氧化分解生物质同时输出电能的一种新装置,因其可将生物质中化学能直接转化为电能,可获得更高的能量转化效率,是未来缓解能源和环境问题的有效途径,引起了科研工作者的广泛关注。本文结合近几年微生物燃料电池的发展,综述了产电微生物种类、电池材料及其改性、反应器的放大以及微生物燃料电池应用方面的研究进展,分析了该领域未来发展的主要方向及面临的问题,指出筛选和诱导产电菌对不同有机底物的耐受性,开发高效价廉的电极材料以及构建易于放大的电池模式,是微生物燃料电池未来研究的重点。在此基础上,应该着重于反应器放大,深入研究其在废水处理、产氢、微生物电化学合成以及传感器方面的应用,确定其实际应用的相关参数和模型,为微生物燃料电池早日实际应用打下坚实基础。  相似文献   

10.
微生物燃料电池是在水处理领域中集污水处理与产电功能为一体的新技术。但其产电性能低与其制作成本高制约着微生物燃料电池向实用化发展。因此,提高阴极对氧还原的电化学活性和降低阴极催化剂的制备成本是微生物燃料电池的研究重点之一。本文综述了近年来微生物燃料电池中非生物阴极氧还原催化剂载体的最新研究进展。重点讨论了石墨烯、碳纳米管、碳基材料等作为催化剂载体的种类、电催化性能、催化剂的负载方法以及存在的问题等。其中,经高温加硝酸处理后的碳基材料表面活性提高、导电能力增强,且价格低廉,有望成为微生物燃料电池非生物阴极催化剂载体的推广使用。为开发高效能、低成本的微生物燃料电池非生物阴极提供理论指导。  相似文献   

11.
微生物燃料电池阳极材料的研究进展   总被引:1,自引:0,他引:1  
谢丽  程佳  马玉龙 《广东化工》2011,38(4):27-28,50
微生物细胞向阳极转移电子的能力是微生物燃料电池(microbial fuel cell,简称MFC)功率密度低的重要影响因素之一,高性能的MFC阳极要易于产电微生物细胞附着生长,易于电子从微生物细胞向阳极传递,同时要求阳极内部电阻小、导电性强、阳极电势稳定.文章综述了MFC阳极材料的研究进展.  相似文献   

12.
高盐废水通常采用生化、蒸发和膜处理3种方法处理,但无论采用何种方法,高盐废水处理均存在难度大和成本高等问题。微生物燃料电池(MFC)是一种基于产电微生物催化氧化有机物获得电能的装置,应用MFC处理废水可实现在处理废水的同时回收废水中能量,从而降低废水处理成本。近年来,应用MFC处理高盐废水来降低处理成本的研究逐渐开展并成为一个研究热点。本文综述了MFC处理高盐废水研究的最新进展,分析了盐度对MFC产电、污染物脱除、微生物生长和群落的影响,基于耐盐微生物、生物膜、反应器结构及扩展应用等方面提出未来MFC处理高盐废水的研究方向。  相似文献   

13.
微生物燃料电池(Microbial fuel cell,MFC)作为一种绿色能源技术,通过微生物的氧化代谢作用将废水中的有机质降解的同时产生电能.然而,其相对较低的产电效率限制了MFC的工业化应用.该文介绍了影响MFC性能的诸多因素,如设备的构型限制、电极材料、阳极底物、阳极微生物和质子交换膜等,提出优化MFC的设计,提高MFC的产电性能,降低投入成本可解决MFC产业化应用的弊端,并对未来MFC的发展方向进行了展望.  相似文献   

14.
微生物燃料电池(Microbial fuel cell,MFC)是一种非常有前途的环境友好型电化学装置,它可以利用电活性微生物从废水中提取能源,并降解废水中的有机物,是解决目前环境与能源危机的重要技术。然而,相对较低的产电效率限制了其大规模应用,主要体现在阳极缓慢的胞外电子传递速率(extracellular electron transfer,EET)和较少的产电微生物附着量。纳米纤维由于具有高的比表面积、良好的电化学性能和电导率,是改善阳极的重要材料。本文介绍了影响阳极材料性能的因素,系统总结了近年来国内外纳米纤维基阳极材料的种类与制备方法,针对纳米纤维基阳极材料在MFC领域的研究现状,重点解释了各种纳米纤维材料的优缺点。最后,对纳米纤维基电极材料以及MFC技术的发展方向进行了展望,以期为推动MFC的工程化应用提供理论参考。  相似文献   

15.
微生物燃料电池(Microbialfuel cell,MFC)是一种利用微生物的催化作用将有机物中的化学能转化为电能的新型技术,它作为种新型的清洁能源,符合循环经济、清洁生产和可持续发展的要求.文章综述了微生物燃料电池技术在废水处理领域的最新研究进展,并对WC技术的未来发展进行了展望.  相似文献   

16.
微生物燃料电池阳极修饰的研究进展   总被引:2,自引:0,他引:2  
微生物细胞与电池阳极之间的电子转移速率是影响微生物燃料电池(MFC)产电性能的重要因素之一.通过阳极修饰可以促进电子转移速率,进而提高MFC产电性能.综述了MFC阳极修饰的研究进展.  相似文献   

17.
赵慧敏  赵剑强 《化工进展》2016,35(5):1549-1554
微生物燃料电池(MFC)是一种既能去除污染物又能产电的新型污水处理技术,由于其具有利用生物转化能量的节能优势,MFC废水脱氮处理技术引起了更多的关注。本实验在启动MFC的同步硝化与反硝化(SND)后,首先研究了通路与断路条件对MFC产电脱氮的影响,结果表明:断路时有利于硝化反应的发生,氨氮去除率有最大值95.17%;而通路更有利于COD和总氮的去除,表明氮的去除主要依靠阴极接受电子进行。随后分析了曝气阶段+停曝阶段运行方式对MFC产电和脱氮的影响,结果显示:曝气8.5h(DO为4.0mg/L)后停止曝气,停曝阶段为11.5h,DO逐渐降低到2.0mg/L,输出电压由无曝气运行的31mV提高到120mV左右,氨氮去除率最高达到86.42%、总氮去除负荷由无曝气运行的0.064g/(L·d)升高到0.46g/(L·d)。说明曝气阶段+停曝阶段运行方式既能有效提高MFC脱氮产电性能又可以减少维持高浓度DO的能量输入。  相似文献   

18.
以沼液为原料的微生物燃料电池产电降解特性   总被引:3,自引:2,他引:1       下载免费PDF全文
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kW,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

19.
Microbial fuel cells (MFCs) produce electricity as a result of the microbial metabolism of organic substrates, hence they represent a sustainable approach for energy production and waste treatment. If the technology is to be implemented in industry, low cost and sustainable bioelectrodes must be developed to increase power output, increase waste treatment capacity, and improve service intervals. Although the current application of abiotic electrode catalysts, such as platinum and electrode binders such as Nafion leads to greater MFC performance, their use is cost prohibitive. Novel bioelectrodes which use cost effective and sustainable materials are being developed. These electrodes are developed with the intention to reduce start-up time, reduce costs, extend life-span and improve core MFC performance metrics (i.e. power density, current density, chemical oxygen demand (COD) reduction and Coulombic efficiency (CE)). Comparison of different MFC systems is not an easy task. This is due to variations in MFC design, construction, operation, and different inocula (in the case of mixed-culture MFCs). This high intra-system variability should be considered when assessing MFC data, operation and performance. This review article examines the major issues surrounding bioanode and biocathode improvement in different MFC systems, with the ultimate goal of streamlining and standardising improvement processes. © 2018 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号