首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Osteoarthritis (OA) is hallmarked by a progressive degradation of articular cartilage. One major driver of OA is inflammation, in which cytokines such as IL-6, TNF-α and IL-1β are secreted by activated chondrocytes, as well as synovial cells—including macrophages. Intra-articular injection of blood products—such as citrate-anticoagulated plasma (CPRP), hyperacute serum (hypACT), and extracellular vesicles (EVs) isolated from blood products—is gaining increasing importance in regenerative medicine for the treatment of OA. A co-culture system of primary OA chondrocytes and activated M1 macrophages was developed to model an OA joint in order to observe the effects of EVs in modulating the inflammatory environment. Primary OA chondrocytes were obtained from patients undergoing total knee replacement. Primary monocytes obtained from voluntary healthy donors and the monocytic cell line THP-1 were differentiated and activated into proinflammatory M1 macrophages. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and Western blot. Gene expression analysis of chondrocytes by RT-qPCR revealed increased type II collagen expression, while cytokine profiling via ELISA showed lower TNF-α and IL-1β levels associated with EV treatment. In conclusion, the inflammation model provides an accessible tool to investigate the effects of blood products and EVs in the inflammatory context of OA.  相似文献   

2.
Osteoarthritis (OA) is a slow-progressing joint disease, leading to the degradation and remodeling of the cartilage extracellular matrix (ECM). The usually quiescent chondrocytes become reactivated and accumulate in cell clusters, become hypertrophic, and intensively produce not only degrading enzymes, but also ECM proteins, like the cartilage oligomeric matrix protein (COMP) and thrombospondin-4 (TSP-4). To date, the functional roles of these newly synthesized proteins in articular cartilage are still elusive. Therefore, we analyzed the involvement of both proteins in OA specific processes in in vitro studies, using porcine chondrocytes, isolated from femoral condyles. The effect of COMP and TSP-4 on chondrocyte migration was investigated in transwell assays and their potential to modulate the chondrocyte phenotype, protein synthesis and matrix formation by immunofluorescence staining and immunoblot. Our results demonstrate that COMP could attract chondrocytes and may contribute to a repopulation of damaged cartilage areas, while TSP-4 did not affect this process. In contrast, both proteins similarly promoted the synthesis and matrix formation of collagen II, IX, XII and proteoglycans, but inhibited that of collagen I and X, resulting in a stabilized chondrocyte phenotype. These data suggest that COMP and TSP-4 activate mechanisms to protect and repair the ECM in articular cartilage.  相似文献   

3.
Osteoarthritis (OA) is a multifactorial disease which is characterized by a change in the homeostasis of the extracellular matrix (ECM). The ECM is essential for the function of the articular cartilage and plays an important role in cartilage mechanotransduction. To provide a better understanding of the interaction between the ECM and the actin cytoskeleton, we investigated the localization and expression of the Ca2+-dependent proteins cartilage oligomeric matrix protein (COMP), thrombospondin-1 (TSP-1), plastin 3 (PLS3) and stromal interaction molecule 1 (STIM1). We investigated 16 patients who suffered from varus knee OA and performed a topographical analysis of the cartilage from the medial and lateral compartment of the proximal tibial plateau. In a varus knee, OA is more pronounced in the medial compared to the lateral compartment as a result of an overloading due to the malalignment. We detected a location-dependent staining of PLS3 and STIM1 in the articular cartilage tissue. The staining intensity for both proteins correlated with the degree of cartilage degeneration. The staining intensity of TSP-1 was clearly reduced in the cartilage of the more affected medial compartment, an observation that was confirmed in cartilage extracts by immunoblotting. The total amount of COMP was unchanged; however, slight changes were detected in the localization of the protein. Our results provide novel information on alterations in OA cartilage suggesting that Ca2+-dependent mechanotransduction between the ECM and the actin cytoskeleton might play an essential role in the pathomechanism of OA.  相似文献   

4.
Osteoarthritis is the most common human arthritis characterized by degeneration of articular cartilage. Several studies reported that levels of human cartilage glycoprotein chitinase 3-like-1 (CHI3L1) are known as a potential marker for the activation of chondrocytes and the progression of Osteoarthritis (OA), whereas lubricin appears to be chondroprotective. The aim of this study was to investigate the co-expression and co-localization of CHI3L1 and lubricin in normal and osteoarthritic rat articular cartilage to correlate their modified expression to a specific grade of OA. Samples of normal and osteoarthritic rat articular cartilage were analyzed by the Kellgren–Lawrence OA severity scores, the Kraus’ modified Mankin score and the Histopathology Osteoarthritis Research Society International (OARSI) system for histomorphometric evaluations, and through CHI3L1 and lubricin gene expression, immunohistochemistry and double immuno-staining analysis. The immunoexpression and the mRNA levels of lubricin increased in normal cartilage and decreased in OA cartilage (normal vs. OA, p < 0.01). By contrast, the immunoexpression and the mRNA levels of CHI3L1 increased in OA cartilage and decreased in normal cartilage (normal vs. OA, p < 0.01). Our findings are consistent with reports suggesting that these two glycoproteins are functionally associated with the development of OA and in particular with grade 2/3 of OA, suggesting that in the future they could be helpful to stage the severity and progression of the disease.  相似文献   

5.
The composition and organisation of the extracellular matrix (ECM), particularly the pericellular matrix (PCM), in articular cartilage is critical to its biomechanical functionality; the presence of proteoglycans such as aggrecan, entrapped within a type II collagen fibrillar network, confers mechanical resilience underweight-bearing. Furthermore, components of the PCM including type VI collagen, perlecan, small leucine-rich proteoglycans—decorin and biglycan—and fibronectin facilitate the transduction of both biomechanical and biochemical signals to the residing chondrocytes, thereby regulating the process of mechanotransduction in cartilage. In this review, we summarise the literature reporting on the bidirectional reciprocity of the ECM in chondrocyte mechano-signalling and articular cartilage homeostasis. Specifically, we discuss studies that have characterised the response of articular cartilage to mechanical perturbations in the local tissue environment and how the magnitude or type of loading applied elicits cellular behaviours to effect change. In vivo, including transgenic approaches, and in vitro studies have illustrated how physiological loading maintains a homeostatic balance of anabolic and catabolic activities, involving the direct engagement of many PCM molecules in orchestrating this slow but consistent turnover of the cartilage matrix. Furthermore, we document studies characterising how abnormal, non-physiological loading including excessive loading or joint trauma negatively impacts matrix molecule biosynthesis and/or organisation, affecting PCM mechanical properties and reducing the tissue’s ability to withstand load. We present compelling evidence showing that reciprocal engagement of the cells with this altered ECM environment can thus impact tissue homeostasis and, if sustained, can result in cartilage degradation and onset of osteoarthritis pathology. Enhanced dysregulation of PCM/ECM turnover is partially driven by mechanically mediated proteolytic degradation of cartilage ECM components. This generates bioactive breakdown fragments such as fibronectin, biglycan and lumican fragments, which can subsequently activate or inhibit additional signalling pathways including those involved in inflammation. Finally, we discuss how bidirectionality within the ECM is critically important in enabling the chondrocytes to synthesise and release PCM/ECM molecules, growth factors, pro-inflammatory cytokines and proteolytic enzymes, under a specified load, to influence PCM/ECM composition and mechanical properties in cartilage health and disease.  相似文献   

6.
Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. In vitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA.  相似文献   

7.
Articular cartilage is a skeletal tissue of avascular nature and limited self-repair capacity. Cartilage-degenerative diseases, such as osteoarthritis (OA), are difficult to treat and often necessitate joint replacement surgery. Cartilage is a tough but flexible material and relatively easy to damage. It is, therefore, of high interest to develop methods allowing chondrocytes to recolonize, to rebuild the cartilage and to restore joint functionality. Here we studied the in vitro production of cartilage-like tissue using human articular chondrocytes exposed to the Random Positioning Machine (RPM), a device to simulate certain aspects of microgravity on Earth. To screen early adoption reactions of chondrocytes exposed to the RPM, we performed quantitative real-time PCR analyses after 24 h on chondrocytes cultured in DMEM/F-12. A significant up-regulation in the gene expression of IL6, RUNX2, RUNX3, SPP1, SOX6, SOX9, and MMP13 was detected, while the levels of IL8, ACAN, PRG4, ITGB1, TGFB1, COL1A1, COL2A1, COL10A1, SOD3, SOX5, MMP1, and MMP2 mRNAs remained unchanged. The STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis demonstrated among others the importance of these differentially regulated genes for cartilage formation. Chondrocytes grown in DMEM/F-12 medium produced three-dimensional (3D) spheroids after five days without the addition of scaffolds. On day 28, the produced tissue constructs reached up to 2 mm in diameter. Using specific chondrocyte growth medium, similar results were achieved within 14 days. Spheroids from both types of culture media showed the typical cartilage morphology with aggrecan positivity. Intermediate filaments form clusters under RPM conditions as detected by vimentin staining after 7 d and 14 d. Larger meshes appear in the network in 28-day samples. Furthermore, they were able to form a confluent chondrocyte monolayer after being transferred back into cell culture flasks in 1 g conditions showing their suitability for transplantation into joints. Our results demonstrate that the cultivation medium has a direct influence on the velocity of tissue formation and tissue composition. The spheroids show properties that make them interesting candidates for cellular cartilage regeneration approaches in trauma and OA therapy.  相似文献   

8.
Cartilage is frequently damaged with a limited capacity for repair. Current treatment strategies are insufficient as they form fibrocartilage as opposed to hyaline cartilage, and do not prevent the progression of degenerative changes. There is increasing interest in the use of autologous mesenchymal stem cells (MSC) for tissue regeneration. MSCs that are used to treat articular cartilage defects must not only present a robust cartilaginous production capacity, but they also must not cause morbidity at the harvest site. In addition, they should be easy to isolate from the tissue and expand in culture without terminal differentiation. The source of MSCs is one of the most important factors that may affect treatment. The infrapatellar fat pad (IPFP) acts as an important reservoir for MSC and is located in the anterior compartment of the knee joint in the extra-synovial area. The IPFP is a rich source of MSCs, and in this review, we discuss studies that demonstrate that these cells have shown many advantages over other tissues in terms of ease of isolation, expansion, and chondrogenic differentiation. Future studies in articular cartilage repair strategies and suitable extraction as well as cell culture methods will extend the therapeutical application of IPFP-derived MSCs into additional orthopedic fields, such as osteoarthritis. This review provides the latest research concerning the use of IPFP-derived MSCs in the treatment of articular cartilage damage, providing critical information for the field to grow.  相似文献   

9.
10.
Heterozgyous spondyloepiphyseal dysplasia congenita (sedc/+) mice expressing a missense mutation in col2a1 exhibit a normal skeletal morphology but early-onset osteoarthritis (OA). We have recently examined knee articular cartilage obtained from homozygous (sedc/sedc) mice, which express a Stickler-like phenotype including dwarfism. We examined sedc/sedc mice at various levels to better understand the mechanistic process resulting in OA. Mutant sedc/sedc, and control (+/+) cartilages were compared at two, six and nine months of age. Tissues were fixed, decalcified, processed to paraffin sections, and stained with hematoxylin/eosin and safranin O/fast green. Samples were analyzed under the light microscope and the modified Mankin and OARSI scoring system was used to quantify the OA-like changes. Knees were stained with 1C10 antibody to detect the presence and distribution of type II collagen. Electron microscopy was used to study chondrocyte morphology and collagen fibril diameter. Compared with controls, mutant articular cartilage displayed decreased fibril diameter concomitant with increases in size of the pericellular space, Mankin and OARSI scores, cartilage thickness, chondrocyte clustering, proteoglycan staining and horizontal fissuring. In conclusion, homozygous sedc mice are subject to early-onset knee OA. We conclude that collagen in the mutant’s articular cartilage (both heterozygote and homozygote) fails to provide the normal meshwork required for matrix integrity and overall cartilage stability.  相似文献   

11.
Mesenchymal stem cells (MSCs) are known to have the potential for articular cartilage regeneration, and are suggested for the treatment of osteoarthritis (OA). Here, we investigated whether intra-articular injection of xenogeneic human adipose-derived mesenchymal progenitor cells (haMPCs) promoted articular cartilage repair in rabbit OA model and engrafted into rabbit articular cartilage. The haMPCs were cultured in vitro, and phenotypes and differentiation characteristics of cells were evaluated. OA was induced surgically by anterior cruciate ligament transection (ACLT) and medical meniscectomy of knee joints. At six weeks following surgery, hyaluronic acid (HA) or haMPCs was injected into the knee joints, the contralateral knee served as normal control. All animals were sacrificed at the 16th week post-surgery. Assessments were carried out by macroscopic examination, hematoxylin/eosin (HE) and Safranin-O/Fast green stainings and immunohistochemistry. The data showed that haMPC treatment promoted cartilage repair. Signals of human mitochondrial can be directly detected in haMPC treated cartilage. The haMPCs expressed human leukocyte antigen I (HLA-I) but not HLA-II-DR in vivo. These results suggest that intra-articular injection of haMPCs promotes regeneration of articular cartilage in rabbit OA model, and support the notion that MPCs are transplantable between HLA-incompatible individuals.  相似文献   

12.
13.
Osteoarthritis (OA), a degenerative joint disorder, has been reported as the most common cause of disability worldwide. The production of inflammatory cytokines is the main factor in OA. Previous studies have been reported that obeticholic acid (OCA) and OCA derivatives inhibited the release of proinflammatory cytokines in acute liver failure, but they have not been studied in the progression of OA. In our study, we screened our small synthetic library of OCA derivatives and found T-2054 had anti-inflammatory properties. Meanwhile, the proliferation of RAW 264.7 cells and ATDC5 cells were not affected by T-2054. T-2054 treatment significantly relieved the release of NO, as well as mRNA and protein expression levels of inflammatory cytokines (IL-6, IL-8 and TNF-α) in LPS-induced RAW 264.7 cells. Moreover, T-2054 promoted extracellular matrix (ECM) synthesis in TNF-α-treated ATDC5 chondrocytes. Moreover, T-2054 could relieve the infiltration of inflammatory cells and degeneration of the cartilage matrix and decrease the levels of serum IL-6, IL-8 and TNF-α in DMM-induced C57BL/6 mice models. At the same time, T-2054 showed no obvious toxicity to mice. Mechanistically, T-2054 decreased the extent of p-p65 expression in LPS-induced RAW 264.7 cells and TNF-α-treated ATDC5 chondrocytes. In summary, we showed for the first time that T-2054 effectively reduced the release of inflammatory mediators, as well as promoted extracellular matrix (ECM) synthesis via the NF-κB-signaling pathway. Our findings support the potential use of T-2054 as an effective therapeutic agent for the treatment of OA.  相似文献   

14.
15.
Osteoarthritis (OA) is a debilitating joint disorder resulting from an incompletely understood combination of mechanical, biological, and biochemical processes. OA is often accompanied by inflammation and pain, whereby cytokines associated with chronic OA can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF). Several studies suggest a role for cytokines and NGF in OA pain, however the effects of changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. Here, we used high-extension silicone rubber membranes to examine if high mechanical strain (HMS) of primary articular chondrocytes increases inflammatory gene expression and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared to static controls. HMS culture increased p38 MAPK activity compared to static controls. Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain of primary articular chondrocytes in vitro drives factor secretion associated with degenerative joint disease and joint pain. This study provides evidence for a direct link between cellular strain, secretory factors, neo-innervation, and pain in OA pathology.  相似文献   

16.
This article provides a brief review of the pathophysiology of osteoarthritis and the ontogeny of chondrocytes and details how physical exercise improves the health of osteoarthritic joints and enhances the potential of autologous chondrocyte implants, matrix-induced autologous chondrocyte implants, and mesenchymal stem cell implants for the successful treatment of damaged articular cartilage and subchondral bone. In response to exercise, articular chondrocytes increase their production of glycosaminoglycans, bone morphogenic proteins, and anti-inflammatory cytokines and decrease their production of proinflammatory cytokines and matrix-degrading metalloproteinases. These changes are associated with improvements in cartilage organization and reductions in cartilage degeneration. Studies in humans indicate that exercise enhances joint recruitment of bone marrow-derived mesenchymal stem cells and upregulates their expression of osteogenic and chondrogenic genes, osteogenic microRNAs, and osteogenic growth factors. Rodent experiments demonstrate that exercise enhances the osteogenic potential of bone marrow-derived mesenchymal stem cells while diminishing their adipogenic potential, and that exercise done after stem cell implantation may benefit stem cell transplant viability. Physical exercise also exerts a beneficial effect on the skeletal system by decreasing immune cell production of osteoclastogenic cytokines interleukin-1β, tumor necrosis factor-α, and interferon-γ, while increasing their production of antiosteoclastogenic cytokines interleukin-10 and transforming growth factor-β. In conclusion, physical exercise done both by bone marrow-derived mesenchymal stem cell donors and recipients and by autologous chondrocyte donor recipients may improve the outcome of osteochondral regeneration therapy and improve skeletal health by downregulating osteoclastogenic cytokine production and upregulating antiosteoclastogenic cytokine production by circulating immune cells.  相似文献   

17.
Osteoarthritis (OA) is a common debilitating joint disorder, affecting large sections of the population with significant disability and impaired quality of life. During OA, functional units of joints comprising cartilage and subchondral bone undergo uncontrolled catabolic and anabolic remodeling processes to adapt to local biochemical and biological signals. Changes in cartilage and subchondral bone are not merely secondary manifestations of OA but are active components of the disease, contributing to its severity. Increased vascularization and formation of microcracks in joints during OA have suggested the facilitation of molecules from cartilage to bone and vice versa. Observations from recent studies support the view that both cartilage and subchondral bone can communicate with each other through regulation of signaling pathways for joint homeostasis under pathological conditions. In this review we have tried to summarize the current knowledge on the major signaling pathways that could control the cartilage-bone biochemical unit in joints and participate in intercellular communication between cartilage and subchondral bone during the process of OA. An understanding of molecular communication that regulates the functional behavior of chondrocytes and osteoblasts in both physiological and pathological conditions may lead to development of more effective strategies for treating OA patients.  相似文献   

18.
19.
Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1β)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1β-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.  相似文献   

20.
Osteoarthritis (OA) is the most common joint disease characterised by degradation of articular cartilage and bone remodelling. For almost a decade chondrocyte apoptosis has been investigated as a possible mechanism of cartilage damage in OA, but its precise role in initiation and/or progression of OA remains to the determined. The aim of this study is to determine the role of chondrocyte apoptosis in spontaneous animal models of OA. Right tibias from six male Dunkin Hartley (DH) and Bristol Strain 2 (BS2) guinea pigs were collected at 10, 16, 24 and 30 weeks of age. Fresh-frozen sections of tibial epiphysis were microscopically scored for OA, and immunostained with caspase-3 and TUNEL for apoptotic chondrocytes. The DH strain had more pronounced cartilage damage than BS2, especially at 30 weeks. At this time point, the apoptotic chondrocytes were largely confined to the deep zone of articular cartilage (AC) with a greater percentage in the medial side of DH than BS2 (DH: 5.7%, 95% CI: 4.2–7.2), BS2: 4.8%, 95% CI: 3.8–5.8), p > 0.05). DH had a significant progression of chondrocyte death between 24 to 30 weeks during which time significant changes were observed in AC fibrillation, proteoglycan depletion and overall microscopic OA score. A strong correlation (p ≤ 0.01) was found between chondrocyte apoptosis and AC fibrillation (r = 0.3), cellularity (r = 0.4) and overall microscopic OA scores (r = 0.4). Overall, the rate of progression in OA and apoptosis over the study period was greater in the DH (versus BS2) and the medial AC (versus lateral). Chondrocyte apoptosis was higher at the later stage of OA development when the cartilage matrix was hypocellular and highly fibrillated, suggesting that chondrocyte apoptosis is a late event in OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号