首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Partially stabilized zirconia (PSZ) powders were fully densified by microwave heating using a domestic microwave oven. Pressed powder compacts of PSZ were sandwiched between two ZnO–MnO2–Al2O3 ceramic plates and put into the microwave oven. In the first step, PSZ green pellets were heated by self-heating of ZnO–MnO2–Al2O3 ceramics (1000°C). In the second step, the heated PSZ pellets absorbed microwave energy and self-heated up to a higher temperature (1250°C), leading to densification. The density of PSZ obtained by heating in the microwave oven for 16 min was 5.7 g/cm3, which was approximately equal to the density of bodies sintered at 1300°C for 4 h or 1400°C for 16 min by the conventional method. The average grain size of the sample obtained by this method was larger than the average grain size of samples sintered by the conventional method with a similar heating process.  相似文献   

2.
YBa2Cu3O7−x was doped with various metal ions by a new technique in which a pellet (after binder burnout) was soaked in a solution containing the appropriate ions and then dried. The sintered density of the treated pellets depended on the dopant in the solution, and in many cases it was much higher than that obtained for pure YBa2Cu3O7−x (93% to 96% as compared with 85% to 90%). A study of the microstructure revealed that, in those cases where higher sintered densities were obtained, the grain size was much smaller. The grain morphology, however, did not change. It is likely that the high concentration of dopant adsorbed on the grain surface during solution soaking enhanced the rate of sintering.  相似文献   

3.
BaCu(B2O5) ceramics were synthesized and their microwave dielectric properties were investigated. BaCu(B2O5) phase was formed at 700°C and melted above 850°C. The BaCu(B2O5) ceramic sintered at 810°C had a dielectric constant (ɛr) of 7.4, a quality factor ( Q × f ) of 50 000 GHz and a temperature coefficient of resonance frequency (τf) of −32 ppm/°C. As the BaCu(B2O5) ceramic had a low melting temperature and good microwave dielectric properties, it can be used as a low-temperature sintering aid for microwave dielectric materials for low temperature co-fired ceramic application. When BaCu(B2O5) was added to the Ba(Zn1/3Nb2/3)O3 (BZN) ceramic, BZN ceramics were well sintered even at 850°C. BaCu(B2O5) existed as a liquid phase during the sintering and assisted the densification of the BZN ceramic. Good microwave dielectric properties of Q × f =16 000 GHz, ɛr=35, and τf=22.1 ppm/°C were obtained for the BZN+6.0 mol% BaCu(B2O5) ceramic sintered at 875°C for 2 h.  相似文献   

4.
A PbF2–Al2O3 composite was obtained by reaction between Pb(NO3)2 and NH4F solutions within micropores of a porous alumina pellet. The reaction resulted in the formation of a PbF2 deposit layer in the interior region of the pellet close to the surface at the Pb(NO3)2 solution side, toward which the deposit grew preferentially with time. It suggested that the diffusion of Fusions in the deposit would play an important role in this method because β-PbF2 is known as a moderate F- ion conductor at room temperature. The deposit was identified to be †-PbF2 with the fluorite structure, using both XRD and EPMA, although a small amount of α-PbF2 with the rutile structure also existed. The β-PbF2 grains in the initially formed deposit showed essentially no preferred orientation, while the subsequently formed part showed significant preferred orientation with the [ hh O] direction parallel to the growing direction. The degree of preferred orientation increased with distance from the initially formed position and reached a saturated value. The orientation was presumed to be associated with the faster growth rate of the deposited grains along the [ hh O] direction than the others.  相似文献   

5.
A type of new low sintering temperature ceramic, Li2TiO3 ceramic, has been found. Although it is difficult for the Li2TiO3 compound to be sintered compactly at temperatures above 1000°C for the volatilization of Li2O, dense Li2TiO3 ceramics were obtained by conventional solid-state reaction method at the sintering temperature of 900°C with the addition of ZnO–B2O3 frit. The sintering behavior and microwave dielectric properties of Li2TiO3 ceramics with less ZnO–B2O3 frit (≤3.0 wt%) doping were investigated. The addition of ZnO–B2O3 frit can lower the sintering temperature of the Li2TiO3 ceramics, but it does not apparently degrade the microwave dielectric properties of the Li2TiO3 ceramics. Typically, the good microwave dielectric properties of ɛr=23.06, Q × f =32 275 GHz, τf = 35.79 ppm/°C were obtained for 2.5 wt% ZnO–B2O3 frit-doped Li2TiO3 ceramics sintered at 900°C for 2 h. The porosity was 0.08%. The Li2TiO3 ceramic system may be a promising candidate for low-temperature cofired ceramics applications.  相似文献   

6.
ZnNb2O6 (ZN) is a columbite-structured niobate compound showing excellent dielectric properties and comparatively low sintering temperatures (∼1200°C). Hence it is a good candidate for possible low-temperature cofired ceramics (LTCC) applications. In the present investigation, ZnNb2O6 was synthesized in the form of micrometer-sized powder using a conventional solid-state ceramic synthesis route as well as in the form of nanosized powder by a polymer complex method. The finite size effect of ZN particles on sinterability and microwave dielectric properties of sintered pellets was evaluated. The phase formation was confirmed from the X-ray diffraction (XRD) analysis. The particle size distribution of the nanoparticles was found to be of the order of 18–20 nm by using high-resolution transmission electron microscopy analysis and 30 nm by analyzing the XRD patterns using Debye Scherrer's formula, after correcting for the instrument broadening effects. A ZN–60ZnO–30B2O3–10SiO2 (ZBS) composite was made by adding predetermined amounts of glasses. The microstructures of the sintered pellets of ZN and ZN–ZBS composites were examined using scanning electron microscopy and analyzed using image analysis. The nano-ZN–ZBS composites were sintered to 93% of the reported density at 925°C/2 h, with microwave dielectric properties of ɛr=22.5, Q × f ∼12 800 GHz, and τf=−69.6 ppm/°C, emerging as a potential material for possible LTCC applications.  相似文献   

7.
The effect of glass addition on the properties of BaO–TiO2-WO3 microwave dielectric material N-35, which has Q = 5900 and K = 35 at 7.2 GHz for samples sintered at 1360°C, was investigated. Several glasses including B2O3, SiO2, 5ZnO–2B2O3, and nine other commercial glasses were selected for this study. Among these glasses, one with a 5 wt% addition of B2O3 to N-35, when sintered at 1200°C, had the best dielectric properties: Q = 8300 and K = 34 at 8.5 GHz. Both Q and K increased with firing temperature as well as with density. The Q of N-35, when sintered with a ZnO–B2O3 glass system, showed a sudden drop in the sintering temperature to about 1000°C. The results of XRD, thermal analysis, and scanning electron microscopy indicated that the chemical reaction between the dielectric ceramics and glass had a greater effect on Q than on the density. The effects of the glass content and the mixing process on the densification and microwave dielectric properties are also presented. Ball milling improved the densification and dielectric properties of the N-35 sintered with ZnO–B2O3.  相似文献   

8.
A solution sol-gel method has been developed to prepare 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 (0.9PMN-0.1PT) ceramics. During the processing the gel first converted to cubic pyrochlore phase at a calcination temperature of 600°C followed by the formation of pure perovskite phase at 775°C. The ceramics sintered at 1250°C for 4 h showed ≈98% of the theoretical density. The room-temperature dielectric constant of the pellets sintered at 1250°C showed a maximum value of 25035 at 1 kHz. Sintering studies at different temperatures revealed that the dielectric constant increased with increasing grain size in these ceramics.  相似文献   

9.
MgSiO3 ceramics were synthesized and their microwave dielectric properties were investigated. The Mg2SiO4 phase was formed at temperatures lower than 1200°C, while the orthorhombic MgSiO3 phase started to form by the reaction of SiO2 and Mg2SiO4 in the specimen fired at 1200°C. The structure of the MgSiO3 ceramics was transformed from orthorhombic to monoclinic when the sintering temperature exceeded 1400°C. A dense microstructure was developed for the specimens sintered at above 1350°C. The excellent microwave dielectric properties of ɛr=6.7, Q × f =121 200 GHz, and τf=−17 ppm/°C were obtained from the MgSiO3 ceramics sintered at 1380°C for 13 h.  相似文献   

10.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

11.
The effects of V2O5 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O–0.583Nb2O5–3.248TiO2 (LNT) ceramics have been investigated. With addition of low-level doping of V2O5 (≤2 wt%), the sintering temperature of the LNT ceramics could be lowered down to around 920°C due to the liquid phase effect. A secondary phase was observed at the level of 2 wt% V2O5 addition. The addition of V2O5 does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the excellent microwave dielectric properties of ɛr=21.5, Q × f =32 938 GHz, and τf=6.1 ppm/°C could be obtained for the 1 wt% V2O5-doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as an internal electrode.  相似文献   

12.
Ultrafine-Grained Dense Monoclinic and Tetragonal Zirconia   总被引:1,自引:0,他引:1  
Nanoparticles of ZrO2 with diameters ranging from 4 to 8 nm were synthesized by gas condensation. As-prepared n -ZrO2 particles have a monoclinic and a high-pressure tetragonal structure depending on size. Pure ZrO2 was sintered to full density under vacuum at 04 T m within the monoclinic phase field. Final grain sizes in theoretically dense pellets are below 60 nm. By sintering below the monoclinic–tetragonal transition temperature, microcracking was completely avoided. Tetragonal ZrO2 stabilized with 3 mol% Y2O3 was prepared by interdiffusion of nanoparticles and sintered to near-theoretical density.  相似文献   

13.
The microwave dielectric properties of CaTi1− x (Al1/2Nb1/2) x O3 solid solutions (0.3 ≤ x ≤ 0.7) have been investigated. The sintered samples had perovskite structures similar to CaTiO3. The substitution of Ti4+ by Al3+/Nb5+ improved the quality factor Q of the sintered specimens. A small addition of Li3NbO4 (about 1 wt%) was found to be very effective for lowering sintering temperature of ceramics from 1450–1500° to 1300°C. The composition with x = 0.5 sintered at 1300°C for 5 h revealed excellent dielectric properties, namely, a dielectric constant (ɛr) of 48, a Q × f value of 32 100 GHz, and a temperature coefficient of the resonant frequency (τf) of −2 ppm/K. Li3NbO4 as a sintering additive had no harmful influence on τf of ceramics.  相似文献   

14.
The effect of ZrO2 on crystallographic order, microstructure, and microwave dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) ceramics was investigated. A small amount of ZrO2 disturbed the 1:2 cation ordering. The average grain size of the BZT significantly increased with the addition of ZrO2, which was attributed to liquid-phase formation. The relative density increased with the addition of a small amount of ZrO2, but it decreased when the ZrO2 content was increased. Variation of the dielectric constant with ZrO2 addition ranged between 27 and 30, and the temperature coefficient of resonant frequency increased abruptly as the ZrO2 amount exceeded 2.0 mol%. The Q value of the BZT significantly improved with the addition of ZrO2, which could be explained by the increased relative density and grain size. The maximum Q × f value achieved in this investigation was ∼164 000 GHz for the BZT with 2.0 mol% ZrO2 sintered at 1550°C for 10 h.  相似文献   

15.
Bi2O3 was added to a nominal composition of Zn1.8SiO3.8 (ZS) ceramics to decrease their sintering temperature. When the Bi2O3 content was <8.0 mol%, a porous microstructure with Bi4(SiO4)3 and SiO2 second phases was developed in the specimen sintered at 885°C. However, when the Bi2O3 content exceeded 8.0 mol%, a liquid phase, which formed during sintering at temperatures below 900°C, assisted the densification of the ZS ceramics. Good microwave dielectric properties of Q × f =12,600 GHz, ɛr=7.6, and τf=−22 ppm/°C were obtained from the specimen with 8.0 mol% Bi2O3 sintered at 885°C for 2 h.  相似文献   

16.
Dielectric ceramics in the system (Zn1− x Co x )TiO3 ( x = 0–1) were synthesized by the solid-state reaction route. The phase distribution, microstructure, and dielectric properties were characterized by using powder X-ray diffraction analysis, electron microscopy, and microwave measurement techniques. Three phase composition regions were identified in the specimens sintered at 1150°C; [spinel + rutile] at 0 ≤ x ≤ 0.5, [spinel + ilmenite + rutile] at 0.5 < x ≤ 0.7, and [ilmenite] phase at 0.7 < x ≤ 1. For the 0 ≤ x ≤ 0.5 region, the amount of Ti-rich precipitates incorporated into the spinel phase decreased with the Co content at 0 ≤ x ≤ 0.5, with a concomitant increase of the rutile phase. The ilmenite phase appeared for high Co content. The microwave dielectric properties depended on the phase composition and volume according to the three phase regions, where the relative amount of rutile to the spinel or ilmenite determined the dielectric properties. The dielectric constant as a function of Co addition was modeled with a Maxwell mixing rule. An optimum phase distribution was determined in this system with dielectric constant of 25, a Q * f 70 000 GHz, and a low temperature coefficient of the resonant frequency.  相似文献   

17.
The heterogeneous phase distribution found in Ba2Ti9O20 ceramic resonators results from a temperature-dependent phase boundary and slow reaction kinetics. When sintered at 1350°C or higher in oxygen the Ba2Ti9O20 phase becomes slightly reduced and barium-rich. Thus a stoichiometric composition forms rutile and "Ba2Ti9O20'phase. On slow cooling the excess barium diffuses to the oxygen-rich surface where it reacts to form an envelope of rutile-free material surrounding a core containing a small amount of rutile.  相似文献   

18.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

19.
The effects of glass additions on the properties of (Zr,Sn)TiO4 as a microwave dielectric material were investigated. The (Zr,Sn)TiO4 ceramics with no glass addition sintered at 1360°C gave Q = 4900 and K = 37 at 7.9 GHz. Several glasses, including SiO2, B2O3, 5ZnO–2B2O3, and nine commercial glasses, were tested during this study. Among these glasses, (Zr,Sn)TiO4 sintered with ZnO-B2O3–SiO2 (Corning 7574) showed more than 20% higher density than that of pure (Zr,Sn)TiO4 sintered at the same temperature. A 5-wt% addition of SiO2, to (Zr,Sn)TiO4, when sintered at 1200°C, gave the best Q : Q = 2700 at 9 GHz. Results of XRD analysis and scanning electron microscopy and the effect of glass content are also presented.  相似文献   

20.
The reaction sequence of 0.15(Ba0.95Sr0.05)O· 0.15Sm2O3· 0.7TiO2 ceramics during heating as well as the effects of calcination and sintering on microwave properties were investigated. Quantitative microscopic analysis was performed to obtain the volume fraction of the phases. It was found that the amount of second phase, especially TiO2 (rutile), greatly affected the temperature coefficient of resonant frequency of the ceramics. The higher the amount of TiO2 phase, the more positive or the less negative the temperature coefficient of resonant frequency. The temperature coefficient of BaO · Sm2O3· 5TiO2 was calculated using the logarithmic mixing rule to be −30 ppm/°C. The volume fractions of the phases varied with conditions of calcination and sintering. Therefore, by varying calcination and/or sintering temperature, the temperature coefficient of resonant frequency could be adjusted to nearly zero.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号