首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present investigation minimum fluidization velocity, Umf, in a two‐phase inverse fluidized bed reactor is determined using low‐density polyethylene and polypropylene particles of different diameters (4,6 and 8 mm) by measuring pressure drop. In a glycerol system Umf decreased gradually with increase in viscosity up to a value of 6.11 mPa s (60%) and on further increase there was a slight increase in Umf. In the case of the glycerol system the Umf was found to be higher when compared to water. In the non‐Newtonian system (carboxymethylcellulose), Umf decreased with increase in concentration in the range of the present study. The Umf was found to be lower when compared to water as liquid phase. The modified gas‐perturbed liquid model was used to predict the minimum fluidization liquid velocity (Ulmf) for Newtonian and non‐Newtonian systems. Copyright © 2006 Society of Chemical Industry  相似文献   

2.
Fluidized beds of magnetic ion exchangers exhibit special features because of the additional influence of magnetic forces, which cannot be achieved in conventional fluidized or fixed beds. Specific choice of the magnetic parameters, such as particle magnetization, field strength and frequency of the external magnetic field, allows various operating conditions to be attained, the extremes of which may be described by the terms Magnetically Stabilized Fluidized Bed (MSFB) and Magnetically Stirred Reactor (MSR). The experiments conducted in this work show that liquid fluidized MSFBs exhibit a marked decrease in mass transfer compared to conventional fluidized beds operated under the same conditions. We have demonstrated a correlation between the transition from a fluidized bed to a magnetically stabilized fluidized bed and an increase in the value of a newly defined dimensionless number, M*. Provided that the physical properties (magnetization, density and diameter) of the particles are known, it is then possible to obtain a first estimate with regard to the magnetic field required for attaining an MSFB. The experimental data clearly show that the magnitude of the decrease in liquid-side mass transfer associated with this transition is influenced mainly by the ratio between the flow velocity, u, and the minimum fluidization velocity of the particles, umf. Based on this observation, an empirical correlation is presented, which allows an estimation of the Sherwood number, Sh, of an MSFB to be made as a function of the parameters M* and u/umf.  相似文献   

3.
Q. j. Guo  Y. Xu  X. Yue 《化学工程与技术》2009,32(12):1992-1999
The fluidization characteristics of quartz sand and fluid catalytic crack (FCC) catalyst particles in six micro‐fluidized beds with inner diameters of 4.3, 5.5, 10.5, 15.5, 20.5, and 25.5 mm were investigated. The effects of bed diameter (Dt), static bed height (Hs), particles and gas properties on the pressure drop and minimum fluidization velocity (umf) were examined. The results show that the theoretical pressure drops of micro‐fluidized beds deviated from the experimental values under different particles and gas properties. The possible reason is due to an increase in bed voidage under smaller bed diameters. The equations for conventional fluidized beds did not fit for micro‐fluidized beds. umf increased with decreasing Dt. When the ratio of Hs to Dt ranged from 1:1 to 3:1, umf was characterized by a linear equation with Hs, while the slope of the equation umf versus Hs decreased with increasing Dt. In this paper, Dt/dp and Hs/dp were defined as dimensionless variables and a new equation was developed to predict umf in micro‐fluidized beds under the present experimental conditions.  相似文献   

4.
The experiments were carried out in a bench‐scale fluidised bed of 90 mm in diameter to determine the influence of pressure on fluidisation characteristics of Geldart A and B particles over the range of pressure 0.1–4.5 MPa. For Geldart B particles, the results indicate that minimum fluidisation velocity (umf) was found to decrease with pressure whilst bed voidage at umf was unaffected, and the bed expansion height increase with pressure at fixed value of gas velocity was observed for both Geldart B and A particles. For Geldart A particles, minimum bubbling velocity (umb) bed voidage at umb and dense phase voidage were found to increase obviously with pressure, but a slight influence of pressure on umf was observed. The prediction values of high‐pressure fluidisation characteristics from the references' correlations developed at pressure were in agreement with the experimental data. © 2012 Canadian Society for Chemical Engineering  相似文献   

5.
Using the standard deviation of pressure fluctuations to find the minimum fluidization velocity, Umf, avoids the need to de-fluidize the bed so Umf, can be found for operational bubbling fluidized beds without disrupting the process provided only that the superficial velocity may be altered and that the bed remains in the bubbling fluidized state. This investigation has concentrated on two distinct aspects of the pressure fluctuation method for Umf determination: (1) the minimum number of pressure measurements required to obtain reliable estimates of standard deviation has been identified as about 10000 and (2) pressure fluctuation measurements in the plenum below the gas distributor are suitable for Umf determination so the problems of pressure probe clogging and erosion by bed particles may be avoided.  相似文献   

6.
Carbon nanofibers (CNFs) production in the range of hundreds of grams per day has been achieved in a fluidized bed reactor (FBR) by methane decomposition using a nickel based catalyst. The characterization of the carbon produced at different operating conditions (temperature, space velocity and the ratio of gas flow velocity, uo, to the minimum fluidization velocity, umf) has been accomplished by means of X-ray diffraction (XRD), N2 adsorption, temperature-programmed oxidation (TPO), scanning electron microscope (SEM) and transmission electron microscopy (TEM). It has been concluded that the structural and textural properties of the CNFs obtained in the FBR are analogous to the ones obtained in a fixed bed reactor at a production scale two orders of magnitude lower. Thus, FBR can be envisaged as a promising reaction configuration for the catalytic decomposition of methane (CDM), allowing the production of high quantities of CNFs with desirable structural and textural properties.  相似文献   

7.
Experiments were conducted in a bubbling air-fluidized bed to investigate the effect of annular fins of constant thickness on heat transfer. Steady state time averaged local heat transfer coefficient measurements were made by the local thermal simulation technique in a cold bubbling fluidized bed (90 mm ID, 260 mm tall) with horizontally immersed tube initially with no fin and then with three fixed annular fins of constant thickness. Silica sand of mean particle diameter 307 μm and 200 μm were used as the bed materials. The superficial velocity of air was from minimum fluidization conditions, umf, to approximately 3 × umf. The results indicate that, although the heat transfer coefficient falls with the use of fins, the total heat transfer rises as a result of the greater surface area. Increasing the particle diameter reduces the heat transfer coefficient not only for unfinned horizontal tube but also for annular finned horizontal tube at the same conditions of fluidized bed. Based on the experimental data, correlations are proposed for predicting heat transfer coefficient from fluidized bed to horizontally immersed tubes with and without fins.  相似文献   

8.
A fluidized bed reactor made of quartz tube with an I.D. of 0.055 m and a height of 1.0 m was employed for the thermocatalytic decomposition of methane to produce CO2 — free hydrogen. The fluidized bed was used for continuous withdrawal of the carbon products from the reactor. Two kinds of carbon catalysts — activated carbon and carbon black — were employed in order to compare their catalytic activities for the decomposition of methane in the fluidized bed. The thermocatalytic decomposition of methane was carried out in a temperature range of 800–925°C, using a methane gas velocity of 1.0–3.0 U mf and an operating pressure of 1.0 atm. Distinctive difference was observed in the catalytic activities of two carbon catalysts. The activated carbon catalyst exhibited higher initial activity which decreased significantly with time. However, the carbon black catalyst exhibited somewhat lower initial activity compared to the activated carbon catalyst, but its activity quickly reached a quasi-steady state and was sustained over time. Surfaces of the carbon catalysts before and after the reaction were observed by SEM. The effect of various operating parameters such as the reaction temperature and the gas velocity on the reaction rate was investigated.  相似文献   

9.
Multiwalled carbon nanotubes (MWNTs) were synthesized on Al2O3 supported Ni catalysts from C2H2 and C2H4 feedstocks in a fluidized bed. The influence of the ratio of superficial gas velocity to the minimum fluidization velocity (U/Umf), feedstock type, the ratio of carbon in the total quantity of gas fed to the reactor, reaction temperature, the ratio of hydrogen to carbon in the feed gas, and nickel loading were all investigated. Significantly, the pressure drop across the fluidized‐bed increased as the reaction time increased for all experiments, due to the deposition of MWNTs on the catalyst particles. This resulted in substantial changes to the depth and structure of the fluidized bed as the reaction proceeded, significantly altering the bed hydrodynamics. TEM images of the bed materials showed that MWNTs, metal catalysts, and alumina supports were predominant in the product mixture, with some coiled carbon nanotubes as a by‐product. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

10.
气固流化床内射流穿透深度的CFD模拟及其实验验证   总被引:1,自引:1,他引:0       下载免费PDF全文
王其成  任金天  裴培  张锴 《化工学报》2009,60(6):1402-1408
在经典的Gidaspow无黏性双流体模型中考虑离散颗粒对流体和固体动量守恒方程的影响后,建立了一个具有模拟大规模流化床内气固两相流体动力学特性潜在优势的简化数学模型。在CFX4.4商业化软件平台上通过增加用户自定义子程序考察了二维气固流化床(高2.00 m、宽0.30 m)内射流气速、喷嘴尺寸、环隙气速和静床高度对射流穿透深度的影响,并以树脂颗粒(粒径670 μm、密度1474 kg·m-3)为研究对象在厚度为0.025 m的矩形床内进行了对比实验。结果表明,选取空隙率为0.8的等高线作为射流边界比较合适;射流穿透深度随射流气速或射流喷口尺寸的增加而增大;射流周围环隙气速由0变到最小流化速度时,射流穿透深度随环隙气速增加而增大,在最小流化速度时达到最大值,然后随环隙气速增加单调减小,当环隙气速大于2.5倍最小流化速度时,射流穿透深度减小程度变缓;在相同射流气速下射流穿透深度随着静床高度的增加而减小,静床高度对射流穿透深度的影响随着射流气速增加呈现扩大的趋势。  相似文献   

11.
A mathematical model for thermo-catalytic decomposition of methane over carbon black catalysts in a fluidized bed was proposed. The simplified isothermal, uniform flow model was considered and implemented into a computer code to predict the reactor performance. The experiment of methane decomposition into hydrogen and carbon was carried out in a fluidized bed of I.D of 0.055 m and height of 1.0 m. The range of reaction temperature was 850–900 °C, gas velocity was 1.0–3.0 U mf , and catalyst loading was 50–200 g. The reaction parameters for model equation were determined from the curve fittings and the comparison of experimental data with simulation results showed good agreement for fluidized bed reactor system. From the simulation results, the fluidized bed performance with different operating conditions were obtained, and this simple model can be used to predict the performance of a larger scale fluidized bed reactor and also in determining the optimum operating conditions.  相似文献   

12.
Tests have been made of fluidized bed behaviour at operating temperatures up to 950 °C. Bed materials used were sand, ash and alumina falling within the categories of Geldart's Groups B and D. The only wide size distribution material used was the ash.The minimum fluidizing velocity was found to decrease with increase in the operating temperature for Group B materials because of the consequent increase in the fluidizing gas viscosity. However, the decrease was not as large as would have been expected because the voidage at minimum fluidization was also found to vary with temperature. No explanation for the cause of this can be offered. With Group D materials, flow is in the turbulent or transitional regime and gas density is the important factor. Umf then increases with increase in operating temperature.Given appropriate values for ?mf and φ, the Ergun equation predicts Umf very well.A transition between behaviour characteristic of Groups B and D material types has been observed when the operating Remf value passes through ~ 12.5 and Ar ~ 26000.  相似文献   

13.
P. Lan  Q. Xu  M. Zhou  L. Lan  S. Zhang  Y. Yan 《化学工程与技术》2010,33(12):2021-2028
Catalytic steam reforming of bio‐oil is an economically‐feasible route which produces renewable hydrogen. The Ni/MgO‐La2O3‐Al2O3 catalyst was prepared with Ni as active agent, Al2O3 as support, and MgO and La2O3 as promoters. The experiments were conducted in fixed bed and fluidized bed reactors, respectively. Temperature, steam‐to‐carbon mole ratio (S/C), and liquid hourly space velocity (LHSV) were investigated with hydrogen yield as index. For the fluidized bed reactor, maximum hydrogen yield was obtained under temperatures 700–800 °C, S/C 15–20, LHSV 0.5–1.0 h–1, and the maximum H2 yield was 75.88 %. The carbon deposition content obtained from the fluidized bed was lower than that from the fixed bed. The maximum H2 yield obtained in the fluidized bed was 7 % higher than that of the fixed bed. The carbon deposition contents obtained from the fluidized bed was lower than that of the fixed bed at the same reaction temperature.  相似文献   

14.
In the present work, a preliminary study of the pyrolysis process of high density polyethylene (HDPE) in a fluidized bed is investigated in order to determine the influence between the fluidynamic properties of the bed reactor and the amount and composition of the gases produced. As is known, fluidized bed technology is a very interesting option to apply in the pyrolysis field due to i) the lack of moving parts in the hot region that facilitates the maintenance of equipment, ii) the high surface area to volume ratio available in the bed, and iii) the high heat transfer coefficient reached which governs the reaction products. But, heat and mass transfer coefficients are strongly affected by the fluidynamic properties of the bed.During the pyrolysis of HDPE, a fluidynamic characterization of the bed particles that consist of char-coated sand of HDPE has been carried out. Parameters such as the minimum fluidizing velocity (umf), terminal velocity (ut), bed height (hf), bed voidage (εf), fraction of the bed occupied by bubbles (δ), bubble diameter (db), bubble velocity (ub), the mass transfer coefficients between the bubble and the cloud (Kbc) and between the cloud and the emulsion (Kce) were determined. Subsequently, the influence of major operating variables and the fluidynamic parameters on the composition and the gas yield of the pyrolysis of HDPE were studied.  相似文献   

15.
The rise velocity, V, of a single sphere, released in the bottom of a bed of sand fluidized by air, was measured: the sphere had a diameter of 9.0 or 13.2 mm; its density ranged from 900 to . These experiments with a single sphere used: (i) a bubbling bed, diameter 141 mm, with 1.05<U/Umf<2.00, (ii) a slugging bed, diameter 24 mm, with 1.70<U/Umf<3.20. Here U is the fluidizing velocity; U=Umf at incipient fluidization. It was found that, for each sphere in a given bed, V=Vmf+C(U-Umf): the constant C was up to 10 times larger for bubbling beds than slugging beds.The rise velocity at incipient fluidization, Vmf, is governed, for both types of bed, by the apparent viscosity of the incipiently fluidized bed. Therefore, Stokes's law was used to predict Vmf, but using an important modification: since each buoyant sphere appears to carry on its top a defluidized ‘hood’ of particles, Stokes's law was applied to the composite ‘particle’ consisting of the sphere plus its hood. Analysis of the measured Vmf then gave the volume of the hood, in agreement with direct measurements of it above a fixed cylinder in a two-dimensional bed. In addition, the analysis gave the apparent viscosity of the incipiently fluidized bed to be 0.66 Pa s, in excellent agreement with the estimate of Grace (Can. J. Chem. Eng. 48 (1970) 30) for similar sand.  相似文献   

16.
This paper presents an experimental study in order to establish mixing and segregation conditions of wood sawdust and coal particles in a fluidized bed of sand or alumina particles. Experiments were performed at room temperature under atmospheric pressure. Simple equipment was used to divide the bed into layers and useful results could be obtained in a short period of time. The influence of fluidization velocity, time of an experiment, size and concentration of sawdust or coal particles was investigated. Uniformity of mixing was found to increase with an increase in the fluidization velocity. For u/umf less than 2.5, strong segregation occurred between sawdust and sand particles. Determination of good mixing conditions will be useful in gasification studies of sawdust and coal.  相似文献   

17.
Particle-to-emulsion and interparticle heat transfer rates were estimated in the range 1.5 ? u/umf ?3.5, 0.69 ? dp ? 2.15 mm by drying wet refractory particles in fluidized beds of similar dry particles of the same sizes. Overall particle-to-emulsion heat transfer coefficients decrease roughly as the inverse of the particle diameter. Particle-to-particle heat transfer coefficients vary with the power-2 of the particle diameter and decrease as the fluidization velocity increases.  相似文献   

18.
The gas mixing in the radial direction within a fluidized bed equipped with a multi‐horizontal nozzle distributor was studied using response surface methodology (RSM), which enables the examination of parameters with a moderate number of experiments. All experiments were carried out in a circular fluidized bed of 0.29 m I.D. cold model fluidized bed. The distributor is placed beside twenty‐two horizontal nozzles that are arranged in three concentric circles with all existing discharge directed clockwise. The tracer gas (CO2) was discharged into the bed as a tracer gas and the analysis was performed with a gas chromatograph. In order to compare the different internal circulations, the tracer gas was discharged in the center area or annular area of the bed. In RSM, the static bed height, superficial velocity and the open area ratio of the distributor are chosen as the research variables, and the standard deviation of the time averaged radial tracer concentration is used as the objection function. A mathematical model for the gas mixing as a function of the operating parameters was empirically proposed. The results show that the standard deviation of time averaged radial tracer concentration is well correlated with the operating and geometry parameters, (UUmf)/Umf, Hs/D and ψd, and that the tracer gas injected to the center position has a better dispersion than when injected to the annular position. This model can be used for optimizing the design of fluidized bed reactors at a required performance level.  相似文献   

19.
This work was aimed at modeling hydrodynamic characteristics of fluidization in conical beds using quartz sand as the inert bed material and air as the fluidizing agent. The minimum fluidization velocity, umf, and the minimum velocity of full fluidization, umff, were determined by Peng and Fan's models modified for conical fluidized bed. Meanwhile, the pressure drop across a bed, Δp (including Δpmax and Δpmff corresponding to umf and umff, respectively), was predicted by using modified Ergun's equations for variable superficial air velocity at an air distributor, u0. The predicted results were validated by experimental data for some operating conditions. Effects of the sand particle size, cone angle and static bed height on the fluidization pattern and hydrodynamic characteristics are discussed. With the proposed models, the Δp-u0 diagram were obtained with rather high accuracy for the conical air-sand beds of 30-45° cone angles and 20-30 cm static bed heights, when using 300- sand particles. For the predicted umf and umff, the relative computational errors were found to be within 20% for wide ranges of operating variables, whereas Δpmax and Δpmff could be predicted with lower (10-15%) relative errors. With higher cone angles and/or bed heights, the computational accuracy was found to deteriorate.  相似文献   

20.
The effect of some design parameters on the expansion of particles has been studied in a fluidized bed of 300 mm diameter. Four distributors were examined; three perforated plates, each perforated by holes of 0.8 mm in diameter but different hole densities at 6 mm, 9 mm and 12 mm pitch, and a porous plastic distributor 17 mm thick. Particles of different materials in the Archimedes number range from 100 to 105 were fluidized. The inserts were held vertically as arrays. All experimental data for four distributors were correlated within experimental error by the equation: whereU, Umf, U0 are the gas velocity, velocity at minimum fluidization and real or apparent terminal velocity, while e is the bed porosity and emf is the porosity at the condition of minimum fluidization. P is the hole pitch of perforated plate distributor in millimeters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号