首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
彭芬  刘源  黄伟 《化工学报》2012,63(Z1):159-164
以钴、铜为活性金属,采用等体积浸渍法制备Co-Cu双金属催化剂,考察了不同载体的Co-Cu双金属催化剂对CH4-合成气梯阶转化直接合成C2+含氧化合物的影响,并进行了XRD、NH3-TPD和H2-TPR表征及相应的分析。实验结果表明,载体对催化剂催化性能有较大的影响,不同载体的催化剂对CH4-合成气两步梯阶转化反应的活性高低顺序为Co-Cu/TiO2>Co-Cu/Al2O3>Co-Cu/SiO2,Co-Cu/TiO2催化剂对C2+含氧化合物的选择性为79.9%。这归因于TiO2载体与活性金属Co、Cu之间适宜的相互作用及载体对Co-Cu良好的分散性能。此外,Co-Cu/TiO2催化剂还具有反应所需的表面酸量及适度的中强酸度。  相似文献   

2.
在费托合成反应中,Ti通常起到助剂的作用,Ti的加入能够有效的改变催化剂的物理化学性质,进而改变催化剂费托合成反应的活性及选择性。本文研究了Ti的引入方式对钴基费托合成催化剂催化性能的影响。制备了Ti修饰载体Al2O3的钴基费托合成催化剂Co3/Ti-Al2O3和Ti修饰活性组分前驱体的钴基费托合成催化剂Co3-Ti/Al2O3,分别对其进行了FT-IR、BET、TG、XRD、TPR、TPD、TEM等表征,并研究了其费托催化性能。结果表明,以两种不同方式引入助剂钛后得到的两个催化剂Co3/Ti-Al2O3和Co3-Ti/Al2O3的选择性和活性情况基本一致。  相似文献   

3.
采用化学共还原法制备聚乙烯吡咯烷酮(PVP)稳定的Pt/Co和Pt/Ni双金属纳米溶胶,采用UV-Vis、TEM等对所合成的Pt/Co和Pt/Ni双金属纳米溶胶进行表征,研究了化学组成对双金属纳米溶胶催化剂催化NaBH4水解制氢的影响. 结果表明,所制双金属纳米溶胶的平均粒径约为2.0 nm,双金属纳米溶胶的催化能力高于单金属Pt, Co, Ni纳米溶胶,Pt/Co和Pt/Ni双金属纳米颗粒优异的催化性能可归因于电荷转移效应,Co或者Ni原子与Pt原子之间发生的电荷转移效应使得Pt原子带负电而Co或者Ni原子带正电,荷电的Pt和Co、Ni原子成为催化反应的活性中心,促进了催化反应的进行.  相似文献   

4.
采用浸渍-还原法制备了铁、钴、镍、铜和锌催化剂,考察了其催化氨硼烷水解产氢性能,并优化了钴催化剂的制备条件和反应条件。结果发现,铁催化剂中铁以Fe2B合金相存在,钴催化剂中钴以金属钴存在,镍催化剂中镍以金属镍和Ni(OH)2·2H2O存在,铜催化剂中铜以金属铜和氧化亚铜存在,锌催化剂中锌以Zn4SO4(OH)6·4H2O存在。铁、钴、镍、铜和锌催化剂催化氨硼烷水解产氢活性由大到小顺序为钴催化剂、镍催化剂、铜催化剂、铁催化剂、锌催化剂。显然,具有金属钴相的钴催化剂、金属镍相的镍催化剂和金属铜相的铜催化剂催化氨硼烷产氢活性高于具有Fe2B合金相的铁催化剂。锌催化剂在制备条件下不能被还原为金属相,它几乎没有催化氨硼烷产氢活性。氯化钴与还原剂硼氢化钠的物质的量比为1∶1.3、还原温度为303 K时制备的钴催化剂催化BH3NH3水解产氢性能最佳。反应动力学计算表明钴催化剂催化BH3NH3水解产氢反应对氨硼烷浓度的反应级数为零级,对钴催化剂浓度的反应级数为一级,活化能为58 kJ/mol。  相似文献   

5.
还原胺化合成乙二胺催化剂的制备及表征   总被引:1,自引:0,他引:1  
选择TiO2为载体,Cu和Re为助剂,采用浸渍法制备改性Ni-Co双金属催化剂,研究其在乙醇胺还原胺化合成乙二胺的应用,通过单2因素和正交设计实验确定催化剂制备的最佳条件:金属负载量10%,镍/钴比4,助剂含量2%,浸渍溶液pH为8。采用XRD和SEM-EDS技术对催化剂的晶型结构、表面微观形貌和元素含量进行表征。结果表明,Ni以分散的金属态存在,Co以氧化物的形式存在,催化剂表面粗糙,比表面积较大,金属含量适当,催化剂活性较好。  相似文献   

6.
以硝酸镍为镍源、硝酸钴为钴源,通过钼酸根和二甲基咪唑改变活性位点和结构,制备层状双金属氢氧化物,并以次磷酸钠为磷源制备了磷化镍钴双金属催化剂。利用电化学工作站对催化剂的析氢反应和析氧反应性能进行了测试,并使用电子显微镜对催化剂的显微结构进行表征。通过改变镍钴加入量探究双金属比例对催化剂电催化性能的影响。结果表明,当Ni、Co比例为1∶1时性能最好。  相似文献   

7.
采用等体积浸渍法制备一系列双金属Ni-Co/HZSM-5催化剂,考察反应温度和Ni与Co质量比对甲烷二氧化碳催化重整性能的影响。采用BET和H2-TPR表征催化剂的孔结构和还原性能,结果表明,负载的活性组分均匀分散在HZSM-5载体孔道内。Ni与Co之间存在协同作用,促进了Ni-Co/HZSM-5催化剂的还原性能。单金属Co催化剂几乎对甲烷没有转化活性,双金属Ni-Co催化剂催化活性明显提高,Ni与Co质量比6∶4时,催化剂甲烷二氧化碳重整反应的催化活性和稳定性优于单金属Ni催化剂。  相似文献   

8.
采用饱和浸渍法制备了γ-Al2O3负载的Pt单金属和Pt-Ni双金属催化剂,用固定床反应器评价了催化剂的甲基环己烷脱氢反应性能,以考察Ni对Pt/γ-Al2O3催化甲基环己烷脱氢性能的影响。结果表明,与单金属催化剂相比,Pt-Ni双金属催化剂具有更好的脱氢活性和稳定性。氢氧滴定分析结果表明加入Ni后Pt的分散性能变好,TEM分析表明加入Ni后金属颗粒尺寸变大,结合氢氧滴定与TEM数据,认为掺入Ni之后形成了Pt-Ni新的体系,此体系提高了催化剂表面上氢的结合能,最终提高了Pt-Ni双金属催化剂的脱氢活性和稳定性。此结果为开发适用于有机液体储氢材料脱氢的高效催化剂提供了思路。  相似文献   

9.
以多孔材料为载体,Ni-Co双活性组分为基料,采用浸渍法制备改性Ni-Co双金属催化剂。研究其在乙醇胺还原合成乙二胺中的应用,选择TiO2为载体,Cu、Re为助剂,通过单因素和正交设计实验确定了催化剂制备的最佳条件为:金属负载量10%,镍/钴比4,助剂含量2%,浸渍溶液pH为8。采用XRD和SEM-EDS技术对催化剂的晶型结构、表面微观形貌和元素含量进行表征。结果表明:Ni以分散的金属态存在,Co以氧化物的形式存在,催化剂表面粗糙,比表面积较大,金属含量适当,催化剂活性较好。  相似文献   

10.
武世伟  王廷  侯焕娣  申海平 《化工进展》2022,41(10):5406-5415
浆态床渣油加氢技术的核心和关键是采用了高分散性催化剂,其具有定向催化加氢活性和抑制结焦能力,保证了渣油中沥青质的高效轻质化,维持装置长周期稳定运行。而在分散型催化剂中添加助金属,不仅可以有效降低催化剂的成本,还可以显著提高催化剂的加氢活性。本文全面综述了浆态床渣油加氢裂化技术中分散型双金属催化剂的研究进展,包括钴-钼、镍-钼、铁-镍等双金属催化剂,重点介绍了双金属催化剂的活性和活性相结构,同时分析总结了不同双金属催化剂的优缺点。通过探索双金属催化中金属之间的协同作用,深入认识催化剂活性相结构,展望分散型双金属催化剂的未来发展,对渣油高效转化催化剂的开发具有重要意义。  相似文献   

11.
奚锦基  金保昇  董新新  张梦杰  丁雪宇 《应用化工》2023,(11):2986-2990+2997
以蜂窝陶瓷为载体,使用浸渍法负载Ni、Co双金属,形成整体式催化剂,研究其催化生物质燃气合成低碳烃性能,并采用N2等温吸附、H2-TPR等对催化剂进行表征。结果表明,在360℃、H2/CO=2和0.3 MPa的反应条件下,Ni、Co负载量分别为2%和4%时,催化剂具有最优催化性能,CO转化率可达93.60%,产气低位热值为9.84 MJ/Nm3,较进气提高了26.82%。与Ni单金属催化剂相比,添加Co可在降低CH4和CO2选择性的同时,提高C2-C3的选择性,从而有利于提高燃气热值;Co的引入虽有助于增强催化剂的抗烧结能力,但积碳量却有所上升。  相似文献   

12.
为了研究[P, N]型镍催化剂的双重强供电子效应对烯烃与极性单体共聚性能的影响,本文设计合成了两种咪唑烷-2-亚胺为配体的镍配合物Ni1和Ni2,并通过核磁对其表征,研究了该类镍配合物在二氯乙基铝(EtClAl2)助催化剂的活化下催化降冰片烯均聚及其与苯乙烯的共聚行为。结果表明,以EtClAl2为助催化剂时,配合物Ni1催化降冰片烯均聚活性高达1.92×107 g/(mol·h)。该体系配合物同样有效催化降冰片烯与苯乙烯共聚,Ni1的聚合活性高达2.14×106 g/(mol·h)。该体系催化剂对降冰片烯与苯乙烯共聚表现出良好的聚合性能,从而为高效镍金属催化剂的开发提供理论依据。  相似文献   

13.
以γ-Al2O3为载体,采用共浸渍法合成了负载量为35%(以CuO与ZnO总质量计)的CuZn金属氧化物催化剂,分别考察了金属助剂(Co、Ni,、Mg、Fe、Mn、Ba和Ce)对催化剂的影响。采用XRD、BET和H2-TPR等方法对制备的催化剂进行表征,在微反装置上对催化剂的N2O催化分解活性进行评价。结果表明,合成的CuZn氧化物催化剂均具有CuxZn1-xAl2O4的类Co3O4尖晶石结构;加入金属助剂使催化剂的比表面积不同程度得到提高,催化剂的N2O催化分解反应活性不仅与Cu3+还原为Cu2+的温度有关,还与晶粒尺度大小和催化剂比表面积等有关;其中,含金属助剂Ni的催化剂具有相对较高的N2O催化分解反应活性,其N2O完全转化温度为567 ℃。除含金属助剂Ba催化剂以外,加入其他金属助剂有利于N2O催化分解反应进行。  相似文献   

14.
采用浸渍法制备了Ni/Al2O3、Ni/TiO2、Ni/活性炭和Ni/硅藻土等一系列镍系催化剂,研究了其催化对硝基苯酚加氢制备对氨基苯酚的活性.负载型镍系催化剂具有单一的对氨基苯酚选择性.不同载体负载的催化剂上对硝基苯酚的转化率顺序为:Ni/活性炭>Ni/硅藻土>Ni/TiO2Ni/Al2O3.高比表面积以及金属镍在活性炭上的良好分散性使得Ni/活性炭催化活性最高;NiO与硅藻土间弱相互作用,有助于提高活性;而NiO与Al2O3之间存在相互作用抑制了还原后金属镍的催化加氧活性.  相似文献   

15.
刘迎新  陈吉祥  张继炎  何菲 《化工学报》2005,56(11):2114-2118
采用等体积浸渍法制备了La2O3改性的Ni/SiO2催化剂,考察了La2O3的引入方法对Ni/SiO2催化剂催化间二硝基苯加氢制间苯二胺反应性能的影响,并采用XRD、TPR和XPS等表征技术对催化剂的物化性质进行了研究.结果表明,La2O3的添加顺序对Ni/SiO2催化剂的物化性质和加氢性能影响非常明显.当镧以先于镍浸渍方式引入时,将大大削弱载体与镍物种之间的相互作用,镍晶粒度变小,分散度增加,催化剂的活性显著提高,间二硝基苯转化率和间苯二胺收率分别达到97.1%和93.5%.在以镍和镧共浸方式制备的催化剂中,La2O3的存在也使Ni/SiO2催化剂的反应性能有所改善,但效果没有镧先于镍浸渍方式突出.当以先浸镍后浸镧的方式加入助剂时,催化剂中的镍晶粒增大,分散性变差,催化剂的活性大幅度下降.  相似文献   

16.
张惠民  赵震 《工业催化》2007,15(12):31-34
以氢气和氮气的混合气体为氮化气体与铁钼、钴钼及镍钼双金属氧化物进行程序升温氮化反应合成了铁钼、钴钼及镍钼双金属氮化物催化剂。将铁钼、钴钼和镍钼氮化物分别用于催化丙烷氨氧化反应,研究结果表明,钴钼和镍钼双金属氮化物催化剂具有更高的催化活性和更高的丙烯腈选择性。  相似文献   

17.
黎先财  陈娟荣 《现代化工》2005,25(10):37-39
采用等体积浸渍法制备了Ni/BaTiO3、Co/BaTiO3和Ni-Co/BaTiO3催化剂,并在固定床反应装置上考察了在973~1 073 K这些催化剂对CO2重整CH4反应的催化活性,且采用程序升温还原技术对催化剂进行表征,发现与单金属催化剂相比,Ni-Co/BaTiO3双金属催化剂有更为优越的催化活性。结果表明在Ni-Co/BaTiO3催化剂中Ni和Co之间产生了一定的协同作用。同时研究了不同的制备方法对Ni-Co双金属催化剂催化活性的影响,用溶胶-凝胶法制备的催化剂具有更高的催化活性。  相似文献   

18.
助剂对Ni/AC催化剂甲醇羰化的影响   总被引:3,自引:0,他引:3  
分别以Ni(NO3)2.6H2O、ZnAc2.6H2O、Cu(NO3)2.6H2O、(NH4)6Mo7O24及La(NO3)3.4H2O为前体,采用同时浸渍法制备了主活性组分为镍的双金属活性炭负载型催化剂,考察了Zn、Cu、Mo及La等第二金属元素对甲醇羰化合成醋酸Ni/AC催化剂的助催化作用。活性评价表明:以Mo和La为助剂时,可有效地提高甲醇转化率和羰化产物收率,Mo的添加有利于醋酸甲酯的生成,La则使醋酸的选择性提高;Zn、Cu的加入反而使甲醇转化率及羰化产物收率下降。催化剂的羰基化活性顺序为:Ni-Mo/AC>Ni-La/AC>Ni/AC>Ni-Zn/AC>Ni-Cu/AC。关于稀土元素的影响,结果是La优于Ce。  相似文献   

19.
以La2O2CO3作为载体,采用浸渍法制备了负载型Ni-Co/La2O2CO3双金属催化剂,通过XRD检测金属及载体的晶相,采用自制的升温系统研究催化剂的综合性能。结果表明,催化乙醇水蒸气重整制氢反应中,Ni比Co断裂C—C键的能力强,而Co能提高H2的选择性,Ni-Co质量比为3∶1的双金属催化剂,在400℃时,乙醇转化率可达100%,在500℃时,CO的选择性低至0.28%,而H2的选择性则达到94.11%。与单一金属负载的催化剂相比,Ni-Co双金属催化剂的综合催化性能得到了较好的改善。  相似文献   

20.
分别采用共沉淀法、浸渍法和水热法合成了Ni/CeO_2复合催化剂,对这三种催化剂进行乙醇水蒸气重整制氢性能测试。采用X射线衍射(XRD)、程序升温还原(H_2-TPR)、热稳定性等表征技术对催化剂的结构和催化性能之间的关系进行了关联。结果表明,制备方法对催化活性有着重要的影响,水热法合成的Ni/CeO_2复合催化剂在反应温度为325℃时可将乙醇完全转化,在热稳定性能测试过程中表现出良好的活性、选择性和热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号