首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the interfacial bonding between halloysite nanotubes (HNTs) and poly(l ‐lactide) (PLLA), a simple surface modification of HNTs with l ‐lactic acid via direct condensation polymerization has been developed. Two modified HNTs were obtained: HNTs grafting with l ‐lactic acid (l‐HNTs) and HNTs grafting with poly(l ‐lactide) (p‐HNTs). The structures and properties of l‐HNTs and p‐HNTs were investigated. Then, a series of HNTs/PLLA, l‐HNTs/PLLA and p‐HNTs/PLLA composites were prepared using a solution casting method and were characterized by polarized optical microscopy (POM), field scanning electron microscopy, and tensile testing. Results showed that l ‐lactic acid and PLLA could be easily grafted onto the surface of HNTs by forming an Al carboxylate bond and following with condensation polymerization, and the amounts of the l ‐lactic acid and PLLA grafted on the surface of the HNTs were 5.08 and 14.47%, respectively. The surface‐grafted l ‐lactic acid and PLLA played the important role in improving the interfacial bonding between the nanotubes and matrix. The l‐HNTs and p‐HNTs can disperse more uniformly in and show better compatibility with the PLLA matrix than untreated HNTs. As a result, the l‐HNTs/PLLA and p‐HNTs/PLLA composites had better tensile properties than that of the HNTs/PLLA composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41451.  相似文献   

2.
To modify the mechanical properties of a poly(l ‐lactide) (PLLA)/poly(para‐dioxanone) (PPDO) 85/15 blend, poly(para‐dioxanone‐co‐l ‐lactide) (PDOLLA) was used as a compatibilizer. The 85/15 PLLA/PPDO blends containing 1–5 wt % of the random copolymer PDOLLA were prepared by solution coprecipitation. Then, the thermal, morphological, and mechanical properties of the blends with different contents of PDOLLA were studied via differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile testing, respectively. The DSC result revealed that the addition of PDOLLA into the blends only slightly changed the thermal properties by inhibiting the crystallization degree of the poly(l ‐lactide) in the polymer blends. The SEM photos indicated that the addition of 3 wt % PDOLLA into the blend was ideal for making the interface between the PLLA and PPDO phases unclear. The tensile testing result demonstrated that the mechanical properties of the blends containing 3 wt % PDOLLA were much improved with a tensile strength of 48 MPa and a breaking elongation of 214%. Therefore, we concluded that the morphological and mechanical properties of the PLLA/PPDO 85/15 blends could be tailored by the addition of the PDOLLA as a compatibilizer and that the blend containing a proper content of PDOLLA had the potential to be used as a medical implant material. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41323.  相似文献   

3.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
In this study, ring‐opening graft polymerization of l ‐lactide onto cellulose was carried out homogeneously in ionic liquid (IL)/dimethyl sulfoxide (DMSO) co‐solvent as a reaction media. Through the effective control of high viscosity and steric hindrance caused by the interaction between the IL and the hydroxyl group of cellulose by adding DMSO as a co‐solvent, cellulose‐graft‐poly(l ‐lactide) (Cell‐g‐PLLA) copolymer with higher substitution efficiency was successfully prepared, at relatively low concentration of l ‐lactide. The maximum values of molar substitution, degree of lactyl substitution, and degree of polymerization of poly(l ‐lactide) in the copolymer were 3.76, 1.74, and 2.16, respectively, determined by 1H‐NMR. The prepared cell‐g‐PLLA copolymers showed thermal plasticization with a glass transition temperature of 155°C. In addition, the thermal processibility could be improved as the amount of grafted PLLA in the copolymer increased. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41331.  相似文献   

5.
A copolymer, poly(L ‐lactide)‐g‐poly(N‐vinyl pyrrolidone) (PLLA‐g‐PVP) was prepared with poly(L ‐lactide) (PLLA) and N‐vinyl pyrrolidone in the presence of methanol as a solvent by γ‐ray irradiation. The structure of PLLA‐g‐PVP was characterized by 1H‐NMR and Fourier transform infrared spectroscopy. The PLLA‐g‐PVP graft ratio calculated by the percentage increase in weight increased with the increase of absorbed dose, and the percentage crystallinity of PLLA‐g‐PVP decreased with increasing graft ratio. The introduction of the poly(N‐vinyl pyrrolidone) chain into PLLA resulted in a decrease in the contact angle of PLLA‐g‐PVP with increasing graft ratio. In vitro degradation testing showed that PLLA‐g‐PVP had a higher degradation rate both in the weight‐loss test and molecular weight measurement because of a lower crystalline percentage and higher hydrophilicity compared to PLLA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Supramolecular poly(?‐capolactone)/poly(lactide) alternating multiblock copolymers were prepared by UPy‐functionalized poly(lactide)‐b‐ poly(?‐capolactone)‐b‐ poly(lactide) copolymers. The prepared supramolecular polymers (SMPs) exhibit the characteristic properties of thermoplastic elastomers. The stereo multiblock SMPs (sc‐SMPs) were formed by blending UPy‐functionalized poly(l ‐lactide)‐b‐ PCL‐b‐ poly(l ‐lactide) (l ‐SMPs) and UPy‐functionalized poly(d ‐lactide)‐b‐ PCL‐b‐ poly(d ‐lactide) (d ‐SMPs) due to stereocomplexation of the PLLA and PDLA blocks. Sc‐SMPs with low content of d ‐SMPs (≤20%) are transparent, elastic solids, while those having high d ‐SMPs content are opaque, brittle solids. The effects of l ‐SMPs/d ‐SMPs mixing ratios on thermal, crystallization behaviors, crystal structure, mechanical and hydrophilic properties of sc‐SMPs were deeply investigated. The incorporation of UPy groups depresses the crystallization of polymer, and the stereocomplex formation accelerates the crystallization rate. The used initiator functionalized polyhedral oligomeric silsesquioxanes causes a different effect on the crystallization of PLA and PCL blocks. The tensile strength and elongation at break of l d /d d ‐SMPs (d represents the initiator diethylene glycol) are significantly larger than that of l p /d p ‐SMPs (p represents the initiator polyhedral oligomeric silsesquioxanes), and their heat resistance and hydrophilicity can be also modulated by the l ‐SMPs/d ‐SMPs mixing ratios and the different initiators. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45575.  相似文献   

7.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

8.
The purpose of this study was to investigate the suitability of a six‐arm star‐shaped poly(l ‐lactide)s (s‐PLLA) as controlled drug carriers for hydrophobic drug molecules. First, s‐PLLA was synthesized by ring‐opening polymerization of l ‐lactide using sorbitol as initiator and stannous octoate as catalyst. The structure and molecular weight (Mw) of s‐PLLA was characterized with 1H NMR, 13C NMR, and GPC. Second, rifampicin (RIF) used as a model drug was encapsulated within the microspheres of s‐PLLA via oil‐in‐water emulsion/solvent evaporation technique. The morphology, drug encapsulation efficiency (EE), and in vitro release behavior of the prepared microspheres were studied in details. Results indicated that the average diameters of s‐PLLA microspheres can be controlled between 8 and 20 µm by varying the copolymer's concentration or Mw . The EE of RIF was mainly determined by the concentration of s‐PLLA. The in vitro study showed that the burst release behavior can be depressed by increasing the Mw of the s‐PLLA. Present work suggests that the synthesized s‐PLLA could be used as a new material for drug delivery. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42213.  相似文献   

9.
Well‐defined poly(l ‐lactide‐b‐ethylene brassylate‐b‐l ‐lactide) (PLLA‐b‐PEB‐b‐PLLA) triblock copolymer was synthesized by using double hydroxyl‐terminated PEBs with different molecular weights. Gel permeation chromatography and NMR characterization were employed to confirm the structure and composition of the triblock copolymers. DSC, wide‐angle X‐ray diffraction, TGA and polarized optical microscopy were also employed to demonstrate the relationship between the composition and properties. According to the DSC curves, the cold crystallization peak vanished gradually with decrease of the PLLA block, illustrating that the relatively smaller content of PLLA may lead to the formation of a deficient PLLA type crystal, leading to a decrease of melting enthalpy and melting temperature. Multi‐step thermal decompositions were determined by TGA, and the PEB unit exhibited much better thermal stability than the PLLA unit. Polarized optical microscopy images of all the triblock samples showed that spherulites which develop radially and with an extinction pattern in the form of a Maltese cross exhibit no ring bond. The growth rate of the spherulites of all triblock samples was investigated. The crystallization capacity of PLLA improved with incorporation of PLLA, which accords with the DSC and wide‐angle X‐ray diffraction results. © 2019 Society of Chemical Industry  相似文献   

10.
The enhancement of mechanical properties were achieved by solution blending of poly(d ‐lactide) (PDLA) and 5‐arm poly(l ‐lactide) (5‐arm PLLA). Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results indicated almost complete stereocomplex could be obtained when 5‐arm PLLA exceeded 30wt %. Tensile test results showed that the addition of 5‐arm PLLA in linear PDLA gave dramatically improvement both on tensile strength and elongation at break, which generally could not be increased simultaneously. Furthermore, this work transformed PDLA from brittle polymer into tough and flexible materials. The mechanism was proposed based on the TEM results: the stereocomplex crystallites formed during solvent evaporation on the blends were small enough (100–200 nm), which played the role of physical crosslinking points and increased the interaction strength between PDLA and 5‐arm PLLA molecules, giving the blends high tensile strength and elongation at break. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42857.  相似文献   

11.
Effect of Poly(l ‐lactide)/Poly(d ‐lactide) (PLLA/PDLA) block length ratio on the crystallization behavior of star‐shaped poly(propylene oxide) block poly(d ‐lactide) block poly (l ‐lactide) (PPO–PDLA–PLLA) stereoblock copolymers with molecular weights (Mn) ranging from 6.2 × 104 to 1.4 × 105 g mol?1 was investigated. Crystallization behaviors were studied utilizing differential scanning calorimetry (DSC), polarized optical microscopy (POM), and wide‐angle X‐ray diffraction (WAXD). Only stereocomplex crystallites formed in isothermal crystallization at 140 to 156°C for all samples. On one hand, the overall crystallization rate decreased as PLLA/PDLA block length ratio increased. As PLLA/PDLA block length ratio increased from 7:7 to 28:7, the value of half time of crystallization (t1/2) delayed form 2.85 to 5.31 min at 140°C. On the other hand, according to the Lauritzen–Hoffman theory, the fold‐surface energy (σe) was calculated. σe decreased from 77.7 to 73.3 erg/cm2 with an increase in PLLA/PDLA block length ratio. Correspondingly increase in nucleation density was observed by the polarized optical microscope. Results indicated that the PLLA/PDLA block length ratio had a significant impact on the crystallization behavior of PPO–PDLA–PLLA copolymers. POLYM. ENG. SCI., 55:2534–2541, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
Hybrids of poly(L ‐lactide)/organophilic clay (PLACHs) have been prepared by a melt‐compounding process using poly(L ‐lactide) (PLLA) and different contents of surface‐treated montmorillonite modified with a dimethyl dioctadecyl ammonium salt. The dispersion structures of clay particles in PLACHs were investigated using wide‐angle X‐ray diffraction and transmission electron microscopy. The solid‐state linear viscoelastic properties for these PLACHs were examined as functions of temperature and frequency. The incorporation of organo‐modified silicate into PLLA matrix enhanced significantly both storage moduli (E′) and loss moduli (E″). The strong enhancement observed in dynamic moduli of PLACHs could be attributed to uniformly dispersed state of the clay particles with high aspect ratio (= length/thickness of clay) and the intercalation of the PLLA chains between silicate layers. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Modification of poly(l ‐lactide) (PLLA) via blending with two or more polymers is one of the effective approaches used to overcome the brittleness of PLLA, which often requires the addition of a compatibilizer and generate opaque materials. To solve this problem, multiarmed polycaprolactone‐block‐PLLA (PCL‐b‐PLLA) was synthesized by consecutive ring‐opening polymerization of ε‐caprolactone and l ‐lactide using multihydroxyl alcohols as initiator. The structure and composition was confirmed by proton nuclear magnetic resonance and gel permeation chromatography. PLLA/multiarmed PCL‐b‐PLLA blends with various blend ratios were prepared via melt mixing. The presence of multiarmed PCL‐b‐PLLA (30%) in the PLLA matrix exhibited more than 80 times improvement in the elongation at break, as compared to unmodified PLLA. The addition of multiarmed PCL‐b‐PLLA in the PLLA contributed to the enhancement of the storage modulus in the low frequency, which was related to the entanglement of the PLLA and multiarmed PCL‐b‐PLLA. The blend interface had no obvious phase separation, and showed good adhesion between dispersed block copolymer phases within the continuous PLLA phase. The compatibilization mechanism and toughing mechanism were proposed. The resulting PLLA blends also showed good transparency. The current research opened a new route available to prepare transparent PLA‐based resin with enhanced properties. POLYM. ENG. SCI., 56:1125–1137, 2016. © 2016 Society of Plastics Engineers  相似文献   

14.
The poly(l ‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(l ‐lactide) block copolymers (PLLA‐b‐PEG‐b‐PLLA) were synthesized in a toluene solution by the ring‐opening polymerization of 3,6‐dimethyl‐1,4‐dioxan‐2,5‐dione (LLA) with PEG as a macroinitiator or by transterification from the homopolymers [polylactide and PEG]. Two polymerization conditions were adopted: method A, which used an equimolar catalyst/initiator molar ratio (1–5 wt %), and method B, which used a catalyst content commonly reported in the literature (<0.05 wt %). Method A was more efficient in producing copolymers with a higher yield and monomer conversion, whereas method B resulted in a mixture of the copolymer and homopolymers. The copolymers achieved high molar masses and even presenting similar global compositions, the molar mass distribution and thermal properties depends on the polymerization method. For instance, the suppression of the PEG block crystallization was more noticeable for copolymer A. An experimental design was used to qualify the influence of the catalyst and homopolymer amounts on the transreactions. The catalyst concentration was shown to be the most important factor. Therefore, the effectiveness of method A to produce copolymers was partly due to the transreactions. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40419.  相似文献   

15.
Copolymers of ε‐caprolactone and L ‐lactide (PCLLA) with different monomer ratio were synthesized by ring opening polymerization, and drug‐loaded nanoparticles of poly‐ε‐caprolactone (PCL), poly‐L ‐lactide (PLLA), and their copolymers were prepared by precipitation method, respectively. The results of differential scanning calorimetry and X‐ray diffraction indicated that the copolymerization of PCLLA decreased the crystallinity of the polymers, and the results of transmission electron micrograph and laser light scattering (LLS) revealed that the prepared nanoparticles had a spherical shape, and the size of PCLLA nanoparticles (∼ 85 nm) was smaller than that of the PCL and PLLA nanoparticles. The experiment of in vitro drug release showed that the drug release rate from PCLLA nanoparticles was slower than that from PCL and PLLA nanoparticles, and the release profile of PCL6/LA4 nanoparticles appeared to follow zero order kinetics. These results suggested that the polymer composition made a great influence on the nanoparticle size and drug release behavior. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 874–882, 2000  相似文献   

16.
Stereocomplex formation between poly(l ‐lactic acid) (PLLA) and poly(d ‐lactic acid) (PDLA) in the melt state was investigated and altered via the addition of multi‐branched poly(d ‐lactide) (PDLA) additives. Two different multi‐branched PDLA additives, a 3‐arm and 4‐arm star‐shaped polymeric structure, were synthesized as potential heat resistance modifiers and incorporated into PLLA at 5, 10, and 20 (w/w) through melt blending. Mechanical and thermomechanical properties of these blends were compared with linear poly(l ‐lactide) (PLLA) as well as with blends formed by the addition of two linear PDLA analogs that had similar molecular weights to their branched counterparts. Blends with linear PDLA additives exhibited two distinct melting peaks at 170–180°C and 200–250°C which implied that two distinct crystalline domains were present, that of the homopolymer and that of the stereocomplex, the more stable crystalline structure formed by the co‐crystallization of both d ‐ and l ‐lactide enantiomers. In contrast, blends of PLLA with multi‐branched PDLA formed a single broad melting peak indicative of mainly formation of the stereocomplex, behavior which was confirmed by X‐ray diffraction (XRD) analysis. The heat deflection temperature determined by thermal mechanical analysis was improved for all blends compared to neat PLLA, with increases of up to180°C for 20% addition of the 3‐arm PLLA additive. Rheological properties of the blends, as characterized by complex viscosity (η*), remained stable over a wide temperature range. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42858.  相似文献   

17.
Poly(L ‐lactide), that is, poly(L ‐lactic acid) (PLLA), poly(ε‐caprolactone) (PCL), and their blend (50/50) films containing different amounts of poly(L ‐lactide‐co‐ε‐caprolactone) (PLLA‐CL), were prepared by solution casting. The effects of added PLLA‐CL on the enzymatic hydrolysis of the films were investigated in the presence of proteinase K and Rhizopus arrhizus lipase by use of gravimetry. The addition of PLLA‐CL decreased the proteinase K–catalyzed hydrolyzabilities of the PLLA and PLLA/PCL (50/50) films as well as the Rhizopus arrhizus lipase‐catalyzed hydrolyzability of the PCL and PLLA/PCL (50/50) films. The decreased enzymatic hydrolyzabilities of the PLLA and PCL films upon addition of PLLA‐CL are attributable to the fact that the PLLA‐CL is miscible with PLLA and PCL and the dissolved PLLA‐CL must disturb the adsorption and/or scission processes of the enzymes. In addition to this effect, the decreased enzymatic hydrolyzabilities of the PLLA/PCL (50/50) films upon addition of PLLA‐CL can be explained by the enhanced compatibility between the PLLA‐rich and PCL‐rich phases arising from the dissolved PLLA‐CL. These effects result in decreased hydrolyzable interfacial area for PLLA/PCL films. The decrement in proteinase K–catalyzed hydrolyzability of the PLLA film upon addition of PLLA‐CL, which is miscible with PLLA, was in marked contrast with the enhanced proteinase K–catalyzed hydrolyzability of the PLLA film upon addition of PCL, which is immiscible with PLLA. This confirms that the miscibility of the second polymer is crucial to determine the proteinase K–catalyzed hydrolyzabilities of the PLLA‐based blend films. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 412–419, 2003  相似文献   

18.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A room temperature ionic liquid 1‐allyl‐3‐methylimidazolium chloride ([AMIM]Cl) was a promising direct solvent for starch and nonderivitizing solvent for starch‐effective dissolution, in which the ring‐opening graft polymerization (ROGP) of L ‐lactide (L ‐LA) onto starch chains was carried out homogeneously. The obtained starch grafted poly(L ‐lactide) (starch‐g‐PLLA) was characterized by FTIR, 13C NMR, DSC, and WAXD, and the good adhesion between the two components was evidenced by SEM observations although the chains of grafted PLLA were not long. The grafting efficiency of PLLA reached 30% when the ROGP proceeded at 100°C for 10 h with L ‐LA/starch 0.5 : 1 (wt/wt) and stannous octoate (Sn(Oct)2) as a catalyst, which was calculated according to a standard curve newly created by FTIR method. The homopolymerization of L ‐LA and the disconnection of grafted PLLA from starch‐g‐PLLA were the main competition reactions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
A series of biodegradable chitosan‐graft‐polylactide (CS‐g‐PLA) copolymers were prepared by grafting of poly(L ‐lactide) (PLLA) or poly(D ‐lactide) (PDLA) precursor to the backbone of chitosan using N,N′‐carbonyldiimidazole as coupling agent. The composition of the copolymers was varied by adjusting the chain length of PLA as well as the ratio of chitosan to PLA. The copolymers synthesized via this ‘graft‐onto’ method present interesting properties as shown by NMR and infrared spectroscopy, gel permeation chromatography and solubility tests. Hydrogels were prepared by mixing water‐soluble CS‐g‐PLLA and CS‐g‐PDLA solutions. Gelation was assigned to stereocomplexation between PLLA and PDLA blocks as evidenced by differential scanning calorimetry and wide‐angle X‐ray diffraction measurements. Thymopentin (TP5) was taken as a model drug to evaluate the potential of these CS‐g‐PLA hydrogels as drug carriers. An initial burst and a final release up to 82% of TP5 were observed from high‐performance liquid chromatography analysis. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号