首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(13):21166-21171
Rational design and exploration of high infrared radiation materials with remarkable emissivity at high temperatures are always challengeable. In the work, the spinel copper ferrite products with exceptional infrared radiation performance in the wavenumber range of 3–5 μm are massively fabricated through a simple two-step strategy including hydrothermal treatment and low temperature calcination process. Detailed physicochemical characterizations demonstrate that specific structures, compositions, optical behaviors and infrared radiant properties of resultant CuFe2O4 samples are enormously dependent upon the involved hydrothermal temperatures/time and annealing temperatures. The synthetic parameters were optimized as hydrothermal process at 150 °C for 16 h and subsequent calcination at 800 °C. The desirable crystallinity, hetero-composition and lower band gap energy synergistically endow the optimal CuFe2O4 sample with super high infrared radiation emissivity of ~0.913 evaluated at the testing temperature of 800 °C. Our contribution here will provide significant guidance for scalably low-temperature synthesis of high infrared radiation materials with superb emissivity at high temperatures.  相似文献   

2.
《Ceramics International》2022,48(8):10555-10561
Spinel materials are gradually becoming promising materials for high infrared emissivity owing to their unique crystal structure. However, the facile low-temperature solid-state synthesis of infrared radiation materials with superior emissivity remains a tremendous challenge. Herein, a general and simple approach for scalable synthesis of CuFe2O4 samples with spinel structure at low temperatures is smartly developed. The optimal experimental conditions for the infrared emissivity of CuFe2O4 are obtained by the detailed investigation into experimental parameters including calcination temperatures, heating rates, and the mass of polyvinyl pyrrolidone. Under the optimal experimental conditions, the infrared emission values of CuFe2O4 in the wavelength range of 3–5 μm can be as high as 0.986. More significantly, the work here will provide significant guidance for the efficient preparation of spinel materials with excellent infrared emissivity, especially at low temperatures.  相似文献   

3.
《Ceramics International》2022,48(14):20362-20371
The NiFe spinel material itself has good thermal stability and emissivity and can be prepared as an infrared high radiation coating for energy saving applications in industrial high temperature furnace applications. In this study, Cr3+ and Cu2+ doped spinel NiFe2O4 was prepared by solid phase reaction at 1250 °C for 3 h and the microstructure and physicochemical properties of the powder and coating were characterised by XRD, SEM, EDS and IR radiometry. The effect of Cr3+ and Cu2+ doping on the infrared emissivity of spinel NiFe2O4 was investigated and energy saving assessment was carried out in a resistance furnace. The results show that the doping of Cr3+ and Cu2+ can significantly affect the emissivity of spinel powders in the 2.5–10 μm band, and the coatings prepared from the four powders have an emissivity of up to 0.95 in the 2.5–10 μm band. using this high temperature infrared radiation energy saving coating in a resistance furnace resulted in significant energy savings compared to no coating. The furnace was tested for energy saving by holding the furnace for 2 h and 5 h, and the energy saving efficiency reached 20.7% and 17.0% respectively. The coating was subjected to 10 thermal shock tests from room temperature to 700 °C. The coating bonded well and had good thermal shock resistance. Therefore, the coating has wide application prospects for energy saving applications in the field of industrial high temperature furnaces.  相似文献   

4.
《Ceramics International》2023,49(20):33197-33204
Spinel materials are gradually becoming high infrared radiation materials with the most potential because of their special crystal structure. However, it is still difficult to design the microstructure reasonably and synthesize it at low temperature. In this paper, the honeycomb-like CuMn2O4 spinels were prepared via a facile sol-gel method with a subsequent low-temperature sintering treatment. Therefore, the CMO samples with numerous pores are conducive to improving absorptivity and emissivity. Moreover, the optimum experimental conditions for high infrared emissivity were acquired by detailed investigation of the synthesis parameters including the molar ratio of trimonium citrate to metal ions, the molar ratio of urea to metal ions and the sintering temperature. Under the synergistic effect of internal factors such as, a suitable amount of impurities, abundant oxygen vacancy, small band gap, and good crystallinity, the obtained sample CMO-800 achieved excellent infrared radiation performance. Its infrared emissivity values at the test temperature of 30 °C and 600 °C separately reached 0.801 and 0.965 in the wavelength range of 3–5 μm. More significantly, this work provides significant guidance for the design and preparation of spinel materials with excellent infrared emissivity.  相似文献   

5.
《Ceramics International》2020,46(6):7694-7702
CuFe2O4 ferrite is considered to be a promising material to improve the radiation heat transfer of industrial furnaces due to its high infrared emissivity in middle and short wavebands. CuFe2O4 ferrites were prepared by sintering at different temperatures (800, 900, 1000, 1100 and 1200 °C). The thermal behaviour and phase composition were measured by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results validate that the I41/amd structure of CuFe2O4 ferrite transforms to the Fd-3m structure at temperatures above 1000 °C. The cation valence states of CuFe2O4 ferrite with I41/amd and Fd-3m structures were determined by X-ray photoelectron spectroscopy. Through the analysis of the results, it is found that there are differences for the ratio of Cu+/Cu2+ and Fe2+/Fe3+ between the two structures of I41/amd and Fd-3m, which can be attributed to the existence of oxygen vacancy. The different vibrations of metal oxides were measured by Raman spectroscopy, which confirmed the formation of oxygen vacancy. With first principle calculations, the electron transition properties and optical absorption coefficients of the I41/amd and Fd-3m structures were calculated and compared. The calculation results show that the band gap of Fd-3m structure is 0.798eV, which is higher than that of I41/amd structure (0.573eV). This indicates that compared with I41/amd structure, Fd-3m structure has no advantage in improving the emissivity of 3–5 μm waveband. However, VO can introduce donor level into the band gap, which plays a key role in reducing the band gap and increasing the emissivity of 3–5 μm waveband. In the first principle calculations, VO was introduced to calculate the absorption coefficient of Fd-3m structure. It is found that the absorption coefficient of CuFe2O4 ferrite with Fd-3m structure in 3–5 μm waveband is higher than that of I41/amd structure, which indicates that VO can improve the optical absorption of 3–5 μm waveband, so as to improve the emissivity of corresponding waveband. By measuring the emissivity of 3–5 μm waveband, it is verified that the emissivity of Fd-3m structure (0.88) is higher than that of I41/amd structure (0.71).  相似文献   

6.
Pure LaAlO3 and LaAl1-xNixO3 samples (x?=?0.05, 0.1, 0.15, 0.2, 0.25, 0.3) were prepared using a sol-gel technique. The samples were analyzed and characterized using XRD, SEM, FT-IR and XPS. The results showed that the infrared emissivity of LaAl1-xNixO3 powder prepared at 1500?℃ for 2?h increases with Ni2+ doping content. For x?=?0.25, the mean emissivity in the 3–5?µm infrared spectral region was 0.835. This was a 142% increase compared with that of pure LaAlO3 (0.345). The doped Ni ions mainly exist with valences of +?2 and +?3 in the LaAlO3 lattice. After doping, the concentration of electron holes and oxygen vacancies increased, leading to an enhancement of free carrier absorption in the system. It indicated that the Ni2+ doping would introduce an impurity energy level in the forbidden band of LaAlO3 by first principles calculation, forming primarily by the hybridization of the 3d orbital electrons of the Ni ions and the 2p orbital electrons of the oxygen atoms. When x?=?0.25, the band gap decreased from 3.50?eV to 0.77?eV. The impurity energy level allows for a reduction in the energy required for the electrons transferring from the valence band to the conduction band, causing increased numbers of electron transitions between the band gaps, thus enhancing free carrier absorption and increasing the infrared emissivity of the material. The LaAl1-xNixO3 oxide materials prepared in this work had excellent infrared radiation properties. As a lining material at high temperature reacting furnace, the energy loss could be reduced, the heat utilization efficiency would be greatly improved, and the utility model could be used in the field of high-temperature thermal energy saving.  相似文献   

7.
采用溶胶?凝胶法合成了Ni2+掺杂的LaAlO3基红外辐射材料LaAl0.6Ni0.4O2.89 (LANO),以其为辐射基料,利用喷涂工艺在氧化铝陶瓷片表面制备红外辐射涂层,考察了磷酸二氢铝、铝溶胶、硅溶胶和钠水玻璃4种粘结剂对涂层物相组成、热稳定性和红外辐射性能的影响. 结果表明,以LANO为辐射基料、铝溶胶为粘结剂时,涂层红外辐射性能最佳,3?5 ?m波段红外发射率达0.93;所制涂层具有良好的抗热震性能,50次热震后涂层未明显剥落失效;涂层具有显著的强化辐射传热效果,节能率达31.7%.  相似文献   

8.
《Ceramics International》2022,48(18):26003-26012
In this study, a high-entropy RMgAl11O19 (HE-RMA, R = La, Pr, Nd, Sm, Gd) and LaMgAl11O19 (LMA) coatings were fabricated by atmospheric plasma spraying. The phase composition, microstructure, thermal stability, infrared emissivity performance and shock resistance were comparatively characterized. The results showed that doping multiple rare-earth cations could be conductive to enhance the infrared emissivity. The as-sprayed HE-RMA coating exhibited the highest infrared emissivity, which reached up to 0.971 at 1000 °C. The reason for the improvement of the infrared emissivity was attributed to introduced impurity energy level resulting from doping cations, which could reduce the forbidden bandwidth and increase probability of electronic transition. Meanwhile, HE-RMA coating exhibited better shock resistance at 1100 °C due to superior fracture toughness (1.84 ± 0.41 MPa·m1/2) during thermal cycling test at 1100 °C. In addition, HE-RMA coating still exhibited high infrared emissivity (0.932 at 1000 °C) at 1100 °C annealing for 100 h with only a slight reduction.  相似文献   

9.
In this study, pure HfO2 and Pr6O11-HfO2 coatings were prepared by atmospheric plasma spraying. The chemical compositions, morphologies, infrared radiation performances and thermal resistances of the coatings were characterized. The results showed that doping Pr6O11 could effectively improve the infrared emittance of the HfO2 coating. The HfO2 coating doping with 10 wt. % Pr6O11 exhibited the highest infrared emittance, which was 0.859 at room temperature and 0.883 at 1600 °C, correspondingly. This was mainly attributed to the oxygen vacancies, which created by the substitution of Hf4+ by Pr3+, could introduce localized energy states within the HfO2 band gap and increase the lattice distortion, producing lower symmetry vibrations. In addition, the Pr6O11-HfO2 infrared radiation coating possessed high tensile adhesive strength and good thermal resistance, which could withstand a high temperature treatment at 1700 °C for at least 50 h without exfoliation, and there was only a slight reduction in emittance.  相似文献   

10.
To improve the emissivity of ZrB2/SiC coatings for serving in more serious environment, ZrB2/SiC coatings with varying contents of high emissivity Sm2O3 were fabricated using atmospheric plasma spraying. The microstructure, infrared radiative performance and anti-ablation behaviour of the modified coatings were investigated. The results showed that as the content of Sm2O3 increased, the density of the coatings increased because of the low melting point of Sm2O3. When the content of Sm2O3 was 10 vol%, the coating had the highest emissivity in the 2.5–5 μm band at 1000 °C, up to 0.85, because of the oxygen vacancies promoting additional electronic transitions. Due to the high emissivity, the surface temperature of the coating modified with 10 vol% Sm2O3 decreased by 300 °C, which led to little volatilisation of the sealing phase. Further, the mass ablation ratio of the above coating was 3.19 × 10?4 g/s, decreasing 31% compared to that of a ZrB2/SiC coating. The formed dense surface structure of the coatings showed considerable oxygen obstructive effects. These findings indicate that the modified coatings show considerable anti-ablation performance, which provides effective anti-ablation protection for the C/C composite substrate.  相似文献   

11.
In this study, Ca/Tb co-doped HfO2 coatings were prepared by atmosphere plasma spraying. The chemical composition, morphology and infrared property of the coatings were characterized. The coatings possessed a layer-stacked morphology. When the Ca/Tb doping atomic ratio was 1:1, the phase of the coatings gradually changed from monoclinic to cubic with increasing the doping mass. The CTH2 coating had the highest emissivity which was 0.820 in 0.75–6.5 µm and 0.902 in 6.5–15 µm respectively. The enhancement in short band was mainly due to the introduction of Ca2+ and Tb3+ ions that generated oxygen vacancies in the lattice forming impurity levels within the forbidden band, moreover, the transfer of Tb3+ to Tb4+ increased the concentration of free electrons, which promoted the absorption of free carriers. The increase in long band attributed to the lattice distortion that reduced the lattice symmetry and strengthened the absorption of lattice polar vibration.  相似文献   

12.
In this study, Ca2+–Cr3+ co‐doped LaAlO3, a novel energy‐saving material with significantly enhanced infrared emissivity, was synthesized by solid‐state reaction. The experimental results demonstrated that 20 mol% Ca2+ and 10 mol% Cr3+‐doped LaAlO3, namely La0.8Ca0.2Al0.9Cr0.1O3, had an infrared emissivity as high as 0.92 in the spectral region of 1–5 μm, which was 12 times higher than that of pure LaAlO3. The first‐principles electronic structure calculations revealed that the Ca2+–Cr3+ co‐doping results in the occurrence of impurity energy levels in the forbidden band of LaAlO3, which were mainly composed of the Cr 3d orbitals. Electrons partly occupied these impurity donor states and significantly reduced the energy bandgap, thus the infrared radiation property of LaAlO3 was enhanced. This novel material with high infrared emissivity shows promising applications for energy‐saving in the field of thermal process equipment.  相似文献   

13.
A black ceramic coating with high absorptivity and emissivity was successfully prepared on TA7 (Ti-5Al-2.5Sn) in a hybrid electrolyte solution by plasma electrolytic oxidation for improving the imaging precision of optical system. The influence of electrolyte components and technical parameters on the composition, structure, and optical properties was investigated. The results show the coatings with typically porous structure are mainly composed of O, P, Si, Ti, V, Fe, and Ni. The corresponding amorhous oxide in the outer layer endows the coating with strong absorption in the visible light and infrared areas, and the crystallized TiO2 indwelling the inner layer contributes to the strong UV absorption property. In addition, the micropores of the coatings have different size ranges corresponding to the wavelengths, facilitating the increase of absorptivity and emissivity in some degree. The absorptivity and emissivity can be adjusted by electrolyte components and technical parameters. The coating presents the best absorptivity of 0.962 and emissivity of 0.950 in the electrolyte solution of 3 g/L NH4VO3, 5 g/L FeSO4, and 5 g/L C4H6O4Ni under 400 V for 10 minutes.  相似文献   

14.
AlPO4 based coatings were prepared on Ti‐6Al‐2Zr‐1Mo‐1V titanium alloy using aluminum phosphate as a binder and Al2O3/Cr2O3 based mixing particles as the fillers. The microstructure, phase and chemical composition of the coatings were analyzed by SEM, XRD and EDS techniques. The high temperature infrared emissivity values of coated and uncoated titanium samples were tested. The results show that the coating had a higher infrared emissivity value (>0.8) than titanium substrate (0.15–0.3) in the wide wavelength range of 5–20 mm, which is attributed to the uniform dispersion of high emissivity Al2O3 and Cr2O3 particles in the AlPO4 binder matrix. The coated titanium samples exhibited excellent oxidation resistance performance with significantly decreased oxidation rates at 600 and 800°C. The mass gain of the coated sample kept at a low and stable constant of 0.15 mg/cm2, significantly lower than that of titanium substrate (0.54 mg/cm2) when oxidized at 600°C up to 100 h.  相似文献   

15.
Sharp features of hypersonic vehicles increases heat transfer to the surface during flight. This thermal energy can be reduced via increasing the radiation and conduction heat transfer away from the surface. In this study, an emissivity modifier was incorporated into an ultra-high-temperature-ceramic coating system (ZrB2/SiC) to increase its surface radiation heat transfer rate by increasing the emissivity of the surface. The rare-earth were incorporated into the coatings via mechanical mixing Sm2O3 or Tm2O3 with ZrB2/SiC or chemically infiltrating Sm(NO3)3/ethanol solution into ZrB2/SiC. Coatings were fabricated using shrouded air plasma spray. Total hemispherical emissivity results show that the Sm(NO3)3 infiltrated ZrB2/SiC coating had a higher emissivity compared to the baseline ZrB2/SiC coatings up to 1200 °C. The thermal conductivity of all coatings presently studied was below 12 W/m/K. The presence of rare-earth in the boria-rich surface glasses formed during oxidation increases the glass evaporation rate of the coatings compared to the ZrB2/SiC coating.  相似文献   

16.
《Ceramics International》2019,45(10):13004-13010
In this study, the REO-HfO2 (REO = Tb4O7, Gd2O3 and Sm2O3) coatings and pure HfO2 coatings were prepared by atmospheric plasma spraying. The chemical compositions, morphologies, infrared radiation performance and thermal resistances of the coatings were systematically investigated. The experimental results showed that the Tb4O7-HfO2, Gd2O3-HfO2, Sm2O3-HfO2 and pure HfO2 coatings had infrared emissivity values of 0.863, 0.852, 0.854 and 0.621, respectively, at room temperature. Based on the phase analysis, the higher infrared emissivity of the REO-HfO2 coatings could be attributed to the fact that the newly formed RE2Hf2O7 (RE = Tb, Gd and Sm) phase, which had a defective fluorite-type structure, and the RE3+ ions enhanced the lattice absorption and electron absorption. Additionally, the Tb4O7-HfO2 coating exhibited a relatively higher infrared emissivity than those of the Gd2O3-HfO2 and Sm2O3-HfO2 coating over the wavelength range of 1–15 μm, which was due to the relatively higher vibrational frequency of the TbO bond in RE2Hf2O7 (RE = Tb, Gd and Sm) and the transformation of Tb3+ into Tb4+ in the Tb4O7-HfO2 system. In addition, the REO-HfO2 ceramic coatings exhibited excellent thermal resistance, which could withstand high-temperature treatment at 1600 °C for at least 50 h without undergoing a phase change and exfoliation, and the infrared emissivity at different temperatures hardly changed after thermal treatment.  相似文献   

17.
Porous MgAl2O4 ceramics designated as THERMOSCATTTM have diffuse reflectance based on the Mie theory. The reflectance greatly suppresses radiation heat transfer and has low emissivity at 1–5 μm wavelengths. Their thermal conductivity has been measured as less than 0.3 W/(m K) at 1500°C. Furthermore, porous MgAl2O4 ceramics have near-zero hemispherical spectral emissivity values at 0.35–5 μm wavelengths. High heat resistance and low emissivity materials in the atmosphere are useful for the innermost layer of industrial furnaces to confine energy efficiently. Additionally, this material is useful as a radiation reflectors, such as in stand-off thermal protection systems. This study elucidated the suppression of radiation transfer in porous MgAl2O4 ceramics attributable to low thermal emissivity. Therefore, the thermal insulation performance under radiation heating in vacuum, the emissivity validity evaluation of low-emissivity porous materials using finite element analysis, and microstructure effects on radiation heating performance and mechanical properties were investigated.  相似文献   

18.
The Al-doped SrZrO3 perovskite powder with low infrared emissivity at high temperatures was prepared. The infrared radiation performance and thermophysical properties of the perovskites at high temperatures were discussed. As a result, the infrared emissivity of the Al-doped SrZrO3 perovskite powder is associated with Al3+-doping content, phase composition and particle morphology. The flaky particles SrZr0.85Al0.15O2.925 formed by heat treatment at 1000 °C for 6 h have the lowest infrared emissivity of 0.245 in 3–5 μm wavebands at 590 °C. The perovskite powder's infrared emissivity is positively correlated with its electrical resistivity and has no apparent change after heating over 800 °C for long-term. The SrZr0.85Al0.15O2.925 perovskite ceramic formed by pressureless sintering still maintains ideal heat insulation performance with the thermal conductivity from 1.17 to 2.21 W m?1 K?1 below 1400 °C. The Al-doped SrZrO3 perovskite tablet exhibits significant weak radiation intensity due to its characteristics of both low infrared emissivity and thermal conductivity at high temperatures.  相似文献   

19.
《Ceramics International》2020,46(9):13054-13065
Gadolinium zirconate (Gd2Zr2O7) coatings doped by the transition metal Ti and the alkaline earth metal Mg were expected to have improved thermal radiation performance, which could be combined with their excellent thermal barrier properties to comprehensively improve the thermal insulating performance. The results show that the parent Gd2Zr2O7 powder as well as the Gd-site and Zr-site substituted powders crystallize as pyrochlore Gd2Zr2O7 in Fd-3m space group, while all the as-sprayed coatings have the combination of fluorite and a little part of pyrochlore phase. Gd2Zr2O7 ceramic has high mid-infrared emittance and the addition of Ti4+ into Gd2Zr2O7 can enhance the infrared absorption/emittance in a specific wavenumber range, dominantly in the near-infrared (0.75–2.5 μm) band due to the enhancement of electron transition induced by the impurity energy levels linked to the widening of the conduction band. The normal spectral infrared emissivity of Gd2Zr2O7-based coating was higher than 0.88 at 1073 K. The monolayered doped Gd2Zr2O7 coatings present very low thermal cycling lifetime, similar with the parent coating, mainly related with their low fracture toughness, despite (Gd1-xMgx)2Zr2O7 series display lower thermal conductivity than the parent one.  相似文献   

20.
《Ceramics International》2020,46(2):2010-2015
Al0.97Y0.03PO4 thermal radiation material was prepared by homogeneous precipitation method. The influences of Y-doping on crystallization behavior, infrared vibration absorption, surface chemical elemental composition, chemical environment, grain size and infrared emissivity property were analysed in detail by X-ray diffraction, X-ray photoelectron spectroscopy, Solid state NMR, Scanning electron micrograph and infrared emissivity spectrometer, respectively. It is found that the doping of Y greatly improves the infrared radiation property and reduces the grain size. Compared with non-doped AlPO4, Al0.97Y0.03PO4 thermal radiation material possesses a higher infrared emissivity of 0.931 ± 0.002, which suggests that it will have a promising application in the field of infrared heating and drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号