首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biaxially oriented films of blends of high-density polyethylene (HDPE) with polypropylene (PP) homopolymer and PP copolymers prepared by twin-screw extrusion and lab-stretcher have been investigated by scanning electron microscopy (SEM), polarized microscopy, differential-scanning calorimeter, and universal testing machine. Three different kinds of PP copolymers were used: (i) ethylene–propylene (EP) random copolymer; (ii) ethylene–propylene (EP) block copolymer; (iii) ethylene–propylene–buttylene (EPB) terpolymer. In the SEM study of the morphology of films of HDPE with various PP blends, phase separation is observed between the PP phase and the HDPE phase for all blends and compositions. In all blends, HDPE serves to reduce the average spherulites size, probably acting as a nucleating agent for PP. The reduction of spherulite size appeared most significantly in the blend of EPB terpolymer and HDPE. A large increase of crystallization temperature was found in the blend of EPB terpolymer and HDPE compared with the unblended EPB terpolymer. For the blend of EPB terpolymer and HDPE, the improvement of tensile strength and modulus is observed with an increase of HDPE content, and this can be considered as a result of the role of HDPE in reducing average spherulite size. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Blends of semicrystalline isotactic polypropylene (iPP) with two types of elastomer, butadiene/styrene (BS) and hydrogenated isoprene/styrene (HIS), block copolymers were investigated by means of wide-angle and small-angle X-ray scattering. Except for the sample with a low concentration of BS (5 wt%), where the copolymer macromolecules are probably dispersed in the amorphous phase of iPP, the blends can be described as two-component systems (copolymer-iPP), in which the crystalline phase of iPP is only slightly influenced by the copolymer. X-ray results in the structural investigation of the blends correlate well with the mechanical properties of the blends.  相似文献   

3.
Sequential xylene extraction (SXE) in combination with scanning electron microscopy (SEM) and high temperature solvent gradient interaction chromatography (HT-SGIC) were employed for the detailed visualisation and understanding of the evolution of phase morphology in heterophasic ethylene-propylene copolymer (HEPC) particles. The study focused on sequentially extracting the soluble EP rubber phase and EP block or segmented copolymers by SXE at various temperatures. Major changes in the particle morphology (significant increase in both size and number of voids in the particles) after SXE were revealed using SEM imaging. These void structures are believed to result from the amorphous phase (EPR) being removed during the xylene extraction which was further confirmed by differential scanning calorimetry (DSC), high temperature 13C NMR spectroscopy and HT-SGIC. The extractables obtained at 100 °C were found to be a mixture of EP random copolymers, semi-crystalline EP (block or segmented) copolymers, as well as iPP and PE homopolymers. Upon complete dissolution of the particles by SXE at 100 °C, significant amounts of the EP rubber fractions were obtained. Our results show a very heterogeneous distribution of EPR components with varying chemical compositions in HEPC particles produced by dual-reactor processes. For the layered structure observed from this study, truly amorphous EP rubber was found in the outer most regions followed by continuous regions of EP random copolymers having increasing ethylene contents. Propylene-rich EPR, extracted at temperatures of 100 and 130 °C, was observed as the inner EPR phase. Semi-crystalline EP (segmented or block copolymer) and PE homopolymer were detected as intermediate structures between these two EPR regions, inside and outside the pores of the iPP particles. Based on these findings a modified multi-layered core–shell structure was proposed. The results obtained by the proposed SXE fractionation method and its combination with various analytical approaches are found to be very effective for the investigation of the phase composition present in HEPC particles. The present approach is general and can also be used for other multiphase semi-crystalline polyolefins.  相似文献   

4.
The partitioning of the 1-butene co-unit between crystalline and non-crystalline regions of random, homogeneous propylene 1-butene copolymers (PB) has been studied by WAXD, 13C NMR, and FTIR in a series of copolymers with a concentration of 1-butene ranging from 2 to ~ 20 mol%. A partial inclusion of the 1-butene co-unit in the crystallites is identified by the expansion of the unit cell, and quantified by extracting 13C NMR spectra of the crystalline regions. For slowly cooled copolymers, about 30% of the chain’s 1-butene co-units are incorporated into the crystallites. Analyses of FTIR absorbances associated with crystalline 1-butene provide additional quantitative information on the morphological partitioning of the co-unit and give evidence to support that the incorporation of the comonomer into the crystalline regions is controlled by crystallization kinetics. The presence of the comonomer in the crystalline region affects the observed vibration of the most sensitive iPP 3/1 regularity bands associated with the evolution of crystallites, i.e. 841 cm?1 (12 isotactic units). The frequency of this band shifts toward higher values with increasing comonomer and with increasing undercooling, in support of an increasing concentration of entrapped crystalline 1-butene. The frequency shift is absent in copolymers with co-units that are excluded from the crystalline regions, such as the 1-octene comonomer.  相似文献   

5.
Abstract

A series of random ethylene, propylene/1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene copolymers, ethylene and propylene homopolymers were prepared and investigated. The rheological properties (steady state and dynamic shear viscosity, creep compliance and plateau modulus), of copolymer samples with different co-unit content and molecular masses were determined and compared with the properties of homopolymers. The effects of the length of counit and the comonomer content were investigated. The copolymers exhibited similar rheological properties to the homopolymer but they have a lower shear viscosity, normal viscosity, higher steady state creep compliance and smaller plateau modulus values. The effect of comonomer content was evaluated on the bases of free volume theory.  相似文献   

6.
The additive effects of the novel ethylene-propylene random (EP) copolymers with high isotacticity in propylene sequence on the morphology and mechanical properties of isotactic polypropylene (iPP) were investigated using polarized optical microscopy, transmission electron microscopy, dynamic mechanical analysis and tensile behavior. According to these results, the EP copolymers with a propylene content of more than 84 mol% were miscible with iPP, in which the crystallizable PP sequences in these EP copolymers were incorporated in crystal lattice of iPP and the other portions in the EP chains were excluded to the amorphous phases. Consequently, they act as tie molecules linking between adjacent lamellae, leading to enhancement of yield toughness of iPP. On the other hand, the EP copolymers with a propylene-unit content of less than 77 mol% were incompatible with iPP. The iPP/EP blends showed the phase-separated morphology.  相似文献   

7.
Miscibility in the blends of poly(ethylene oxide) (PEO) with n-hexyl methacrylate-methyl methacrylate random copolymers (HMA-MMA) and 2-ethylhexyl methacrylate-MMA random copolymers (EHMA-MMA) was evaluated using glass transition and light scattering methods. EHMA-MMA was more miscible with PEO than HMA-MMA. Both blends of PEO with HMA-MMA and EHMA-MMA showed UCST-type miscibility although homopolymer blends PEO/PMMA were predicted to be of LCST-type. This was attributed to an increase in the exchange enthalpy with increasing HMA or EHMA composition in the random copolymer. From the copolymer composition dependence of miscibility the segmental χ parameters of HMA/MMA, EHMA/MMA, EO/HMA and EO/EHMA were estimated using the Flory-Huggins theory extended to random copolymer systems. Miscibility in the blends of branched PEO with HMA-MMA whose HMA copolymer composition was 0.16 was compared with that in the linear PEO blends. The former blends were more miscible with HMA-MMA than the latter one by about 35 °C at the maximum cloud point temperature.  相似文献   

8.
The rheological, thermal, and mechanical properties of propylene–ethylene block copolymer (PPB) blends with predominantly atactic molecular structure of low molecular weight polypropylene and propylene copolymers with either ethylene or 1‐butene (APAO) have been studied. It has been found that blend properties depend on comonomer type, content, and molecular weight of APAO as well as blend composition. APAO having ethylene comonomer showed better miscibility with PPB than the other ones, and high comonomer content of APAOs gave dramatic increase in impact strength over 30 wt%. It has been concluded that APAO can be used as an effective modifier of PPB. POLYM. ENG. SCI., 47:1905–1911, 2007. © 2007 Society of Plastics Engineers  相似文献   

9.
薛锋  胡庆云 《塑料工业》2007,35(4):16-20,23
采用两段淤浆聚合工艺合成了由低摩尔质量的均聚物和高摩尔质量的共聚物组成的、具有宽峰或双峰摩尔质量分布的高密度聚乙烯大型中空容器级树脂。通过调节第一段和第二段聚合过程中聚合物的熔体质量流动速率来控制摩尔质量的大小及其分布;采用控制第二段共聚物中共聚单体数量来调节聚合物密度;控制第一段小分子数目,增加第二段摩尔质量或调整密度获得最大耐环境应力开裂性(ESCR)。随着共聚单体丁烯-1加入量的增加,反应釜共混物的密度、熔点、结晶度、拉伸屈服应力、断裂伸长率减少。随着高摩尔质量共聚物的含量增加,屈服应力、熔点、密度、结晶度减少,摩尔质量分布的双峰特性也增加,反应釜共混物的均聚物峰的高度减少,共聚物峰的高度增加。流变性能结果表明,通过改变共混物的组分可以获得力学性能和加工性能的平衡。  相似文献   

10.
Isotactic polypropylene (iPP) blends were prepared with two different thermoplastic elastomers, a triblock copolymer styrene–ethylene butylene–styrene (SEBS) and a metallocenic ethylene‐octene copolymer (EO). The mechanical properties and morphology of blends with 0–50 wt% elastomer were studied to determine the influence of the presence of the elastomer on the improvement of toughness. The addition of a nucleating agent as a third component exerted a significant effect on the overall properties. Dynamic mechanical properties, flexural modulus, and impact strength as well as morphology were studied for nucleated and nonnucleated iPP/SEBS and iPP/EO blends. The improvement of impact properties found in binary blends was accompanied by a decrease in stiffness. However, the addition of the nucleating agent provided a good balance between impact strength and stiffness. From the results, SEBS was determined to be a better impact modifier for iPP than EO. The nucleated iPP/SEBS blends demonstrated improved mechanical properties compared with both the nucleated iPP/EO blends and the nonnucleated blends. POLYM. ENG. SCI., 48:80–87, 2008. © 2007 Society of Plastics Engineers  相似文献   

11.
The morphology and mechanical properties of isotactic polypropylene (iPP) and poly(ethylene‐co‐methyl acrylate) (EMA) blends were investigated. Various EMA copolymers with different methyl acrylate (MA) comonomer content were used. iPP and EMA formed immiscible blends over the composition range studied. The crystallization and melting reflected that of the individual components and the crystallinity was not greatly affected. The size of the iPP crystals was larger in the blends than those of pure iPP, indicating that EMA may have reduced the nucleation density of the iPP; however, the growth rate of the iPP crystals was found to remain constant. The tensile elongation at break was greatly increased by the presence of EMA, although the modulus remained approximately constant until the EMA composition was greater than 20%. EMA with a 9.0% MA content provided the optimum effect on the mechanical properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 175–185, 2003  相似文献   

12.
The microphase separation structure in the molten state and the structure formation in crystallization from such ordered melt were investigated for the blends of polystyrene–polyethylene block copolymers (SE) with polystyrene homopolymer (PS) and polyethylene homopolymer (PE) and for the blends consisting of two kinds of SE with different copolymer compositions from each other, using synchrotron small-angle X-ray scattering techniques (SAXS). The copolymer compositions of SE block copolymers employed were 0.34, 0.58 and 0.73 wt. fraction of PE, and their melt morphologies were cylindrical, lamellar and lamellar, respectively. Macrophase separation or the morphology change in the melt occurred depending on the molecular weight and the blend composition, as reported so far. In crystallization from such macrophase-separated and microphase-separated melts, the melt morphology was completely kept for all the blends. Crystallization behavior was also investigated for the blends. The crystallization within the spherical and cylindrical domains surrounded by glassy PS was not observed for SE/PS blends. In the crystallization from the macrophase-separated melt, two exothermal peaks were observed in the DSC measurements, while a single peak was observed for other blends. For the blends with PS, the degree of crystallinity was depressed and the apparent activation energy of crystallization was high, compared to those for the corresponding neat SE. For SE/PE and SE/SE blends, those were changed depending on the blend composition.  相似文献   

13.
This study deals with the behavior of a recycled polyethylene terephthalate (PET)/polypropylene (PP) blends. The compatibilizing effect has been investigated to examine the recycling feasibility in industrial production. The compatibilizing efficiency of olefinic copolymers containing epoxy groups for a/polypropylene (PET/PP) blends was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical testing and rheological one. The effect of ethylene-glycidyl methacrylate (E-GMA, 92/8 wt%, Lotader AX8840) and ethylene–methyl acrylate-glycidyl methacrylate (E-MA-GMA, 68/24/8 wt%, Lotader AX8900) copolymers was investigated. The blends of PET/PP/compatibilizer at compositions 80/15/5, 85/11.25/3.75, 90/7.5/2.5 and 95/3.75/1.25 (wt%) were prepared by melt mixing in a single-screw extruder. Test specimens were prepared by compression moulding at processing temperatures of 250 °C. The incorporation of the compatibilizers has a large effect on the dispersion of the PP phase. Moreover, the copolymer was more efficient than the terpolymer. Especially, E-GMA was found to improve the elongation at break of the blends containing 80 % PET.  相似文献   

14.
In this work, composition effects on interfacial tension and morphology of binary polyolefin blends were studied using rheology and electron microscopy. The amount of dispersed phase (5–30 wt %) and its type [ethylene–octene copolymer, linear low‐density polyethylene (LLDPE), and high‐density polyethylene] was varied, and the influence of different matrix materials was also studied by using a polypropylene homopolymer and a ethylene–propylene (EP) random copolymer. The particle size distribution of the blends was determined using micrographs from transmission electron microscopy (TEM). A clear matrix effect on the flow behavior could be found from the viscosity curves of the blends. Analyzing the viscosity of the blends applying the logarithmic mixing rule indicated a partial miscibility of the EP random copolymer with low amounts of the LLDPE in the melt. Micrographs from TEM also showed a clear difference in morphology if the base polymer is changed, with PE lamellae growing out of the inclusions or being present directly embedded in the matrix. To verify these findings, the interfacial tension was determined. The applicability of Palierne's emulsion model was found to be limited for such complex systems, whereas Gramespacher–Meissner analysis led to interfacial tensions comparable with those already reported in the literature. The improved compatibility when changing the matrix polymer from the homopolymer to the random copolymer allows the development of multiphase materials with finer phase structure, which will also result in improved mechanical and optical performance. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Blends of linear polyethylene (PE) and isotactic polypropylene (iPP) with different average molar masses and a series of ethylene‐propylene (EP) copolymers with different chemical composition as well as blends of PE, Ipp, and EP copolymers were separated using a carbon‐column packing (Hypercarb®) and gradients of 1‐decanol or 2‐ethyl‐1‐hexanol → 1,2,4‐trichlorobenzene (TCB). The separation is based on full adsorption of linear PE on the carbon sorbent at temperature 160°C. However, iPP is not adsorbed and elutes in size exclusion mode. The random EP copolymers have been adsorbed in the column packing and separated according to their average chemical composition after application of the gradient starting with alcohol and ending with pure TCB. The elution volumes of the copolymers depended linearly on the average concentration of ethylene in the copolymers. The HPLC elution profiles were correlated with the CRYSTAF elution profiles. In contrast to CRYSTAF, fully amorphous polyolefin samples were separated with the high‐temperature adsorption liquid chromatography. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Two random commercial ethylene-propylene copolymers (EPM) with different ethylene content have been added to binary isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends by melt mixing in a Brabender-like apparatus. Impact Izod tests and a morphological analysis on the fractured surfaces of broken specimens have been performed and discussed, in order to improve the deficiency in toughness of the binary HDPE/iPP mixtures. The results show that the impact performance of both homopolymers and HDPE/iPP binary blends is strongly improved by the addition of the EPM copolymers. Such an effect is related to the fact that the overall morphology, as well as the mechanism and mode of fracture, are greatly modified by the presence of such additives. The extent is dependent on factors such as the nature of the matrix (HDPE or iPP), the composition, and the chemical structure and/or the molecular mass of the added copolymer.  相似文献   

17.
In situ microfibrillar reinforced blend (MRB) based on poly(ethylene terephthalate) (PET) and isotactic polypropylene (iPP) was elaborated by a slit die extrusion, hot stretching, and quenching process. The scanning electronic microscopic images show well-developed PET microfibers in the blends. The on-line small angle X-ray scattering (SAXS) test shows that PET microfibers have high nucleation for iPP crystallization. At the same time, after shear, neat iPP and microfibrillar blend both can faster crystallization rate. Three nucleation origins are proposed in microfibrillar reinforced blends under shear flow field: (a) the classical row nuclei model, (b) fiber nuclei and (c) nuclei induced by fiber assistant alignment. The polarized optical microscopic images indicate that, during the non-isothermal crystallization at a cooling rate of 10 °C/min from 200 °C to room temperature, the neat iPP forms common spherulites, while the diluted microfibrillar blend with 1 wt% of PET has a typical transcrystalline structure.  相似文献   

18.
In this paper, two methodologies for determining comonomer composition in ethylene 1-olefin copolymers, namely three detectors coupled to a temperature rising elution fractionation unit (3D-TREF) and size exclusion chromatography coupled to a Fourier transfer infrared detector (SEC-FTIR), are examined and compared. Because the two methods are based on different separation mechanisms, insight into the resin's molecular architecture is gained from two entirely different, yet complementary perspectives. The choice of which method to use will be determined by the specific structure vs. property issue under study. Comparative results from the analysis of copolymers produced by Ziegler-Natta, chromium and metallocene catalysts show that both the methods are useful for characterizing LLDPE resins. However, the 3D-TREF method may offer more insight into the heterogeneity of resin blends, particularly when the blend components have similar molecular weights. Although some MW-dependency information of the temperature fractions can be ascertained via viscometer and light scattering detectors, SEC-FTIR is the more appropriate method to detect compositional heterogeneity in resin blends that are composed of two or more resins with the same copolymer compositions, but with different molecular weights.  相似文献   

19.
The influence of the addition of two ethylene-propylene random copolymers (EPM) with different composition on the mechanical properties, thermal behavior and overall morphology of high density polyethylene (HDPE)/isotactic polypropylene (iPP) blends, was investigated on extruded samples. The experimental data showed that the morphology of binary HDPE/iPP blends is drastically modified by these additives and that the ultimate mechanical properties of these mixtures are greatly improved. A reasonable explanation of these results can be ascribed to the fact that these copolymers can act as “compatibilizing agents” in the amorphous regions of the two semicrystalline homopolymers. The extent of such effects is dependent on the chemical structure and/or on the molecular mass of the added copolymer as well as on the HDPE/iPP blend compositions.  相似文献   

20.
Meltrheological behavior, phase morphology, and impact properties of isotactic‐polypropylene (iPP)‐based blends containing ethylene–propylene copolymer (EPR) synthesized by means of a titanium‐based catalyst with very high stereospecific activity (EPRTi) were compared to those of iPP/EPR blends containing EPR copolymers synthesized by using a traditional vanadium‐based catalyst (EPRV). The samples of EPR copolymers were synthesized ad hoc. They were characterized by comparable propylene content, average molecular masses, and molecular mass distribution in order to assess the effects of distribution of composition and sequence lengths of the structural units on the structure–properties correlations established in the melt and in the solid state while studying different iPP/EPR pairs.1–5 Differential scanning calorimetry, (DSC), wide‐angle X‐ray spectroscopy (WAXS), small‐angle X‐ray (SAXS), and scanning electron microscopy (SEM) investigations showed that the EPRTi chain is characterized by the presence of long ethylenic sequences with constitutional and configurational regularity required for crystallization of the polyethylene (PE) phase occurring, whereas a microstructure typical of a random ethylene–propylene copolymer was exhibited by the EPRV copolymer. The different intra‐ and intermolecular homogeneity shown by such EPR phases was found to affect their melt rheological behavior at the temperatures of 200 and 250°C; all the EPRTi dynamic–viscoelastic properties resulting were lower than that shown by the EPRV copolymer. As far as the melt rheological behavior of the iPP/EPRV and iPP/EPRTi blends was concerned, both the iPP/EPR pairs are to be classified as “negative deviation blends” with G′ and G" values higher than that shown by the plain components. The extent of the observed deviation in the viscosity values and of the increase in the amounts of stored and dissipated energy shown by such iPP/EPR pairs was found to be dependent on copolymer microstructure, being larger for the melts containing the EPRTi copolymer. The application of the Cross–Bueche equation also confirmed that, in absence of shear, the melt phase viscosity ratio is the main factor in determining the viscosity of iPP/EPR blends and their viscoelastic parameters. The general correlation established between EPR dispersion degree (range of particle size and number‐average particle size), as determined in injection‐molded samples, and melt phase viscosity ratio (μ) was ratified; the type of dependence of EPR size upon μ value was in qualitative agreement with the prediction of the Taylor–Tomotika theory. Contrary to expectation,1–5 for test temperature close to iPP Tg, EPRV particles ranging in size between 0.75 and 1.25 μm resulted and were more effective than EPRTi particles, ranging in size between 0.25 and 0.75 μm, in promoting multiple craze formation. Also taking into account the SAXS results, revealed that the molecular superstructure (i.e., crystalline lamellar thickness and amorphous interlayer) of the iPP matrix is unaffected by both the presence of EPRTi and EPRV phase. The above finding was related to the ethylenic crystallinity degree shown by the EPRTi copolymer. In particular, such a degree of crystallinity was supposed to deteriorate toughening by decreasing the tie molecules density in the EPRTi domains, notwithstanding the beneficial effect of the ethylenic lamellar buildup. For test temperature close to room temperature, the ductile behavior exhibited by the iPP/EPRTi blends was accounted for by a predominant shear yielding fracture mechanism probably promoted by a high concentration of interlamellar tie molecules among iPP crystallites in agreement with DSC results. Nonisothermal crystallization experiments showed, in fact, that the crystallization peak of the iPP phase from iPP/EPRTi melt is shifted to higher temperatures noticeably, thus indicating a material characterized by a comparatively higher number of spherulites per unit value grown at lower apparent undercooling values. Accordingly, WAXS analysis revealed comparatively higher iPP crystal growth in the directions perpendicular to the crystallographic planes (110) and (040) of the iPP. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 701–719, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号