首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alkali surfactant polymer (ASP) flooding is an enhanced oil recovery (EOR) technology with an impressive potential for increasing incremental oil production from conventional hydrocarbon bearing reservoirs. A challenge to ASP application is the complexity of determining an effective formulation, typically requiring extensive laboratory screening of nearly countless combinations of surfactants and cosolvents. This paper focuses on demonstrating the utility of the hydrophilic–lipophilic deviation (HLD) concept for EOR application to simplify surfactant formulation workstreams seeking an economically viable ASP formulation for field application. In describing work performed for EOR application of ASP under customer conditions using crude oil, the discussion covers the initial evaluation of the promising surfactant formulation (interfacial tension and solubility), the improvement upon the formulation via HLD principles, and the evaluation of the improved surfactant formulation (coreflood studies). The final ASP formulation identified consisted of a 9 to 1 mixture of alkyl propoxy sulfate sodium salt (APS) to alkyl ethoxy sulfate sodium salt (AES) totaling 2000 ppm active surfactant content, 2.0 wt% Na2CO3, and 3000 ppm polyacrylamide polymer (all commercially available products). This formulation had ultra-low interfacial tension and favorable mixing behavior under reservoir conditions. In coreflood studies, the final formulation reproducibly achieved cumulative oil recovery of 96.4%–98.5% of original oil in place with only 0.3 PV of ASP injection with a chase alkali polymer injection.  相似文献   

2.
In this study, interfacial tension (IFT) is measured between brine and crude oil (a sample of heavy oil from an Iranian oil reservoir) in the presence of two nonionic surfactants, KEPS 80 (Tween 80) and Behamid D, at different concentrations in order to optimize the concentrations of the surfactants. The surface response method is used to design the IFT measurement experiments. The experimental design and optimization is performed using the IFT as an objective function and temperature, concentration, and time as independent variables. In addition to the IFT measurement, various experiments such as stability tests of the surfactants in NaCl brine solutions, adsorption experiments on the carbonated rock surface, and phase behavior tests are performed to investigate the behavior of KEPS 80 and Behamid D in the enhanced oil recovery process. At the end, a model using the response surface statistical technique is designed for optimization of the concentrations of the surfactants, and a surfactant molecular migration mechanism is used for explanation of the dynamic IFT variation versus time. In the case of IFT experiments, the effect of surfactant concentration (at 1000, 3000, and 5000 ppm) on the dynamic IFT is investigated. The experiments are performed at four temperatures (25, 40, 50, and 67°C). The results show that the oil–brine IFT values can be reduced to about 4 mN m−1 in the presence of Behamid D and to about 1 mN m−1 in the presence of KEPS 80 at low concentrations.  相似文献   

3.
Surfactants are frequently used in chemical enhanced oil recovery (EOR) as it reduces the interfacial tension (IFT) to an ultra‐low value and also alter the wettability of oil‐wet rock, which are important mechanisms for EOR. However, most of the commercial surfactants used in chemical EOR are very expensive. In view of that an attempt has been made to synthesis an anionic surfactant from non‐edible Jatropha oil for its application in EOR. Synthesized surfactant was characterized by FTIR, NMR, dynamic light scattering, thermogravimeter analyser, FESEM, and EDX analysis. Thermal degradability study of the surfactant shows no significant loss till the conventional reservoir temperature. The ability of the surfactant for its use in chemical EOR has been tested by measuring its physicochemical properties, viz., reduction of surface tension, IFT and wettability alteration. The surfactant solution shows a surface tension value of 31.6 mN/m at its critical micelle concentration (CMC). An ultra‐low IFT of 0.0917 mN/m is obtained at CMC of surfactant solution, which is further reduced to 0.00108 mN/m at optimum salinity. The synthesized surfactant alters the oil‐wet quartz surface to water‐wet which favors enhanced recovery of oil. Flooding experiments were conducted with surfactant slugs with different concentrations. Encouraging results with additional recovery more than 25% of original oil in place above the conventional water flooding have been observed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2731–2741, 2017  相似文献   

4.
Surfactant flooding as a potential enhanced oil‐recovery technology in a high‐temperature and high‐salinity oil reservoir after water flooding has attracted extensive attention. In this study, the synthesis of an alkyl alcohol polyoxyethylene ether sulfonate surfactant (C12EO7S) with dodecyl alcohol polyoxyethylene ether and sodium 2‐chloroethanesulfonate monohydrate, and its adaptability in surfactant flooding were investigated. The fundamental parameters of C12EO7S were obtained via surface tension measurement. And the ability to reduce oil–water interfacial tension (IFT), wettability alteration, emulsification, and adsorption was determined. The results illustrated that IFT could be reduced to 10?3 mN m?1 at high temperature and high salinity without additional additives, and C12EO7S exhibited benign wettability alternate ability, and emulsifying ability. Furthermore, the oil‐displacement experiments showed that C12EO7S solution could remarkably enhance oil recovery by 16.19% without adding any additives.  相似文献   

5.
The article investigates the efficacy of gemini surfactant/polymer/nanoparticle flooding on chemical EOR. Initially, physicochemical behavior of aqueous chemical fluids were investigated via interfacial tension reduction, wettability alteration, adsorption, viscosity moderation and oil displacement experiments. During compositional analysis, Cartesian model with specified grid properties, injection flow-rate, well pattern, and rock-fluid characteristics was developed using CMG-STARS tool. Contour map analyses showed that oil saturation decreased from ~80% (initial) to 31.96%, 30.68%, and 29.30% after {14-6-14 GS + chase water}, {14-6-14 GS + PHPA + chase water}, and {14-6-14 GS + PHPA + SiO2 chase water} flooding respectively. Tertiary recoveries of 15–19% were achieved, depending on injected fluid composition. Experimental data were history matched via CMOST tool to achieve good matching of simulated results. The CMG flooding simulator provides a holistic approach to investigate oil displacement profiles, assess flooding recovery capabilities with near-accuracy and predict the feasibility of proposed chemical EOR projects.  相似文献   

6.
Combined low salinity water (LSW) and polymer (LSP) flooding is the most attractive method of enhanced oil recovery (EOR). Considerable research has investigated effective mechanisms of LSP flooding. In this study, 10 laboratory core flood tests were carried out to evaluate the effects of LSW injection into samples without any clay particles, the timing of LSW injection, and the advantages of adding polymer to the injection water for EOR. Secondary and tertiary LSW injections were performed on sandpack samples with different wettability states and water salinity. Tertiary LSW injection after secondary synthetic seawater (SSW) injection in oil-wet samples resulted in 13% more oil recovery, while the water-wet sample showed no effect on the oil recovery. Secondary LSW injection in oil-wet porous media improved oil recovery by 8% of the original oil in place (OOIP) more than secondary SSW injection. Tertiary LSP flooding after secondary SSW injection in the oil-wet sample provided a recovery of 67.3% of OOIP, while secondary LSW injection followed by tertiary LSP flooding yielded the maximum ultimate oil recovery of about 77% of OOIP. The findings showed that the positive EOR effects of LSW and LSP flooding were the results of wettability alteration, pH increase, improved mobility ratio, better sweep efficiency, and oil redistribution. In addition, results showed that wettability alteration is possible without the presence of clay particles. The findings of this study can help for a better understanding of fluid propagation through the porous media and an investigation of delays in reaching ultimate oil recovery.  相似文献   

7.
Micelles composed of mixed surfactants with different structures (mixed micelles) are of great theoretical and industrial interest. This work pertains tomaximizing interfacial tension (IFT) reduction via surfactant pairs. In this respect, four types of fatty acid amides based on lauric, myristic, palmitic, and stearic acids were blended with dodecyl benzene sulfonic acid at a molar ratio of 4∶1 and designated as A1, A2, A3, and A4, respectively. The IFT was measured for each blend at different concentrations using Badri crude oil. The most potent formula (A4) was evaluated for using in enhanced oil recovery (EOR). The IFT was tested in the presence of different electrolyte concentrations with different crude oils at different temperatures. Finally several runs were devoted to study the displacement of Badri crude oil by A4 surfactant solution using different slug sizes of 10, 20, and 40% of pore volume (PV). The study reveled that Badri crude oil gave ultra-low IFT at lowest surfactant concentration and 0.5% of NaCl. The recovery factor at a slug size of 20% PV was 83% of original oil in place compared with 59% in case of conventional water flood.  相似文献   

8.
The dynamic noncovalent interaction between the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and 1,3-diphenylguanidine (DPG) was employed to control the interfacial activity of the surfactant. At high HCl concentration (1000 mg L−1), the SDBS/DPGn+ system could reduce the water/oil interfacial tension (IFT) to 10−4 mN m−1 order of magnitude, which was much lower than the IFT values in the SDBS/DPG+ system with a low HCl concentration (100 mg L−1) and the individual SDBS system by three and four orders of magnitude, respectively. The pH-switchable protonation of amido groups in DPG molecules determines the SDBS/DPG molecular interaction and the amplitude of IFT reduction, which was confirmed by control experiments using two other surfactants (sodium dodecyl sulfate [SDS] and dodecyl trimethylammonium bromide [DTAB]). Moreover, the investigation of the NaCl and temperature effects on the IFT indicated the intensity of mixed SDBS/DPGn+ adsorption layers at the water/oil interface.  相似文献   

9.
Injected chemical flooding systems with high salinity tolerance and fast‐dissolving performance are specially required for enhancing oil recovery in offshore oilfields. In this work, a new type of viscoelastic‐surfactant (VES) solution, which meets these criteria, was prepared by simply mixing the zwitterionic surfactant N‐hexadecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propane sulfonate (HDPS) or N‐octyldecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propane sulfonate (ODPS) with anionic surfactants such as sodium dodecyl sulfate (SDS). Various properties of the surfactant system, including viscoelasticity, dissolution properties, reduction of oil/water interfacial tension (IFT), and oil‐displacement efficiency of the mixed surfactant system, have been studied systematically. A rheology study proves that at high salinity, 0.73 wt.% HDPS/SDS‐ and 0.39 wt.% ODPS/SDS‐mixed surfactant systems formed worm‐like micelles with viscosity reaching 42.3 and 23.8 mPa s at a shear rate of 6 s?1, respectively. Additionally, the HDPS/SDS and ODPS/SDS surfactant mixtures also exhibit a fast‐dissolving property (dissolution time <25 min) in brine. More importantly, those surfactant mixtures can significantly reduce the IFT of oil–water interfaces. As an example, the minimum of dynamic‐IFT (IFTmin) could reach 1.17 × 10?2 mN m?1 between the Bohai Oilfield crude oil and 0.39 wt.% ODPS/SDS solution. Another interesting finding is that polyelectrolytes such as sodium of polyepoxysuccinic acid can be used as a regulator for adjusting IFTmin to an ultralow level (<10?2 mN m?1). Taking advantage of the mobility control and reducing the oil/water IFT of those surfactant mixtures, the VES flooding demonstrates excellent oil‐displacement efficiency, which is close to that of polymer/surfactant flooding or polymer/surfactant/alkali flooding. Our work provides a new type of VES flooding system with excellent performances for chemical flooding in offshore oilfields.  相似文献   

10.
It is an urgent issue to enhance oil recovery for unconventional reservoirs with high salinity. Focused on this topic, salt addition is a powerful tool to motivate the surfactant assembly at the water/oil interface and improve the interfacial activity. We used a cationic surfactant cetyltrimethylammonium bromide (CTAB) and an anionic salt dicarboxylic acid sodium (CnDNa) to construct gemini-like surfactants at the interface and evaluated their ability to reduce the interfacial tension (IFT) between model oil (toluene and n-decane, v:v = 1:1) and water. Interestingly, the fabrication of a (CTAB)2/C4DNa gemini-like surfactant was hardly achieved at the fresh water/model oil interface, but accomplished at the brine/model oil interface. At a high NaCl concentration (100,000 mg L−1), the IFT value is reduced to 10−3 mN m−1 order of magnitude, which is generally desired in practical applications. The control experiments displacing the surfactant type and the spacer length further confirmed the NaCl effects on the interfacial assembly.  相似文献   

11.
Triglycerides and vegetable oils are amongst the most difficult oils to remove from fabrics due to their highly hydrophobic nature; this is all the more challenging as cold water detergency is pursued in the interest of energy efficiency. Recently, extended surfactants have produced very encouraging detergency performance at ambient temperature, especially at low surfactant concentration. However, the salinity requirement for extended surfactants was excessive (4–14%) and there is limited research on extended‐surfactant‐based microemulsions for cold water detergency (below 25 °C). Therefore, extended‐surfactant‐based microemulsions are introduced in this study for cold temperature detergency of vegetable oils with promising salinity and surfactant concentration. The overall goal of this study is to explore the optimized microemulsion formulations with low surfactant and salt concentration using extended surfactant for canola oil detergency at both 25 and 10 °C. It was found that microemulsion systems achieved good performances (higher than those of commercial detergents) corresponding to IFT value 0.1–1 mN/m with the surfactant concentration as low as 10 ppm and 4% NaCl at 25 °C, and as low as 250 ppm and 0.1% (1000 ppm) NaCl at 10 °C. In addition, microemulsion systems were investigated with a different salt (CaCl2, or water hardness, versus NaCl) at 10 °C, demonstrating that 0.025% CaCl2 (250 ppm) can produce good detergency; this is in the hardness range of natural water. These results provide qualitative guidance for microemulsion formulations of vegetable oil detergency and for future design of energy‐efficient microemulsion systems.  相似文献   

12.
The synthesis of sulfobetaine surfactants and their application in tertiary oil recovery (TOR) are summarized in this paper. The synthesis of sulfobetaine surfactants was classified into three categories of single hydrophobic chain sulfobetaine surfactants, double hydrophobic chain sulfobetaine surfactants and Gemini sulfobetaine surfactants for review. Their application in TOR was classified into surfactant flooding, microemulsion flooding, surfactant/polymer (SP) flooding and foam flooding for review. The sulfonated betaine surfactants have good temperature resistance and salt tolerance, low critical micelle concentration (cmc) and surface tension corresponding to critical micelle concentration (γcmc), good foaming properties and wettability, low absorption, ultralow interfacial tension of oil/water, and excellent compatibility with other surfactants and polymers. Sulfobetaine surfactants with ethoxyl structures, hydroxyl and unsaturated bonds, and Gemini sulfobetaine surfactants will become an important direction for tertiary oil recovery because they have better interfacial activity in high-temperature (≥90°C) and high-salinity (≥104 mg/L) reservoirs. Some problems existing in the synthesis and practical application were also reviewed.  相似文献   

13.
This work investigates the possibility of injecting dilute aqueous solutions of novel surfactants into the Yibal field (Sultanate of Oman). This was accomplished through an experimental protocol based on the following criteria: (i) compatibility of the surfactants with the high-saline reservoir water (∼200 g/L); (ii) low interfacial tension (IFT) between crude oil and reservoir water (less than 10−2 mN m−1); and (iii) maintaining the low IFT behaviour during the entire surfactant flooding. Novel surfactants selected in this study consist of a series of ether sulfonates (AES-205, AES-128, AES-506, and 7–58) and an amphoteric surfactant (6–105). These surfactants were found to be compatible with reservoir water up to 0.1% surfactant concentration, whereas 6–105 and 7–58 showed compatibility within the full range of surfactant concentration investigated (0.001–0.5%). All surfactant systems displayed dynamic IFT behavior, in which ultralow transient minima were observed in the range 10−4–10−3 mN m−1, followed by an increase in the IFT to equilibrium values in the range 10−3–10−1 mN m−1. The results also showed that with respect to concentration (0.05–0.5%) and temperature (45–80°C), AES-205 and 7–58 surfactants exhibit a wide range of applicability, with the IFT remaining below 10−2 mN m−1, as required for substantial residual oil recovery. In addition, ultralow IFT were obtained at surfactant concentrations as low as 0.001%, making the use of these surfactants in enhanced oil recovery extremely cost-effective.  相似文献   

14.
In our previous report, the mixed cationic/anionic surfactant system consisting of N-dodecyl-N-methylpyrrolidinium bromide (L12) and sodium dodecyl sulfate (SDS) showed good interfacial tension (IFT) reduction of water/model oil (Vtoluene:V n-decane = 1:1). In the present study, the effects of divalent salts (MgCl2 or CaCl2) on the interfacial activity were systematically evaluated. The additional Mg2+ ions greatly reduced the IFT to an ultralow value, whereas Ca2+ ions caused the generation of the precipitates and resulted in increased IFT values. The precipitates disappeared in binary divalent salt solutions, and the IFT values remained at a low level. Based on the valence, polarizability, and hydrated radius of the ions, we proposed a model to explain the abnormal changes. The effects of NaCl and temperature were investigated to further verify our proposed mechanism. Moreover, the additional divalent salts obviously enhanced the stability of L12/SDS stabilized emulsions.  相似文献   

15.
The goal of this work was to find an effective surfactant system for enhanced oil recovery after water injection substituting for oil at a vuggy fractured reservoir with a high temperature and high salinity (220,000 mg/L). Four types of surfactants with concentrations (less than 0.2 %) were screened. Washing oil experiments were conducted in Amott cells. A surfactant system was established by mixing a surfactant with best ultimate recovery and one with best recovery rate. The optimized surfactant system could recover 50 % of remaining oil. To study the mechanism of enhanced oil recovery after water injection substituting oil, interfacial tension (IFT) and contact angle were measured. Experimental results showed that surfactants with good washing ability had low IFT, but surfactants with low IFT may not have a good washing ability. IFT had no obvious relationship with the increased oil recovery or washing ability. The optimized system could not alter carbonate to decrease the oil‐wetting capability. Though octadecyl trimethyl ammonium chloride had a good ability wet the carbonate with water, it could not recover much oil. Therefore, except for interfacial tension and wettability alteration, there must be other parameters dominating oil recovery after water injection substituting for oil.  相似文献   

16.
In foam flooding, foams stabilized by conventional surfactants are usually unstable in contacting with crude oil, which behaves as a strong defoaming agent. In this article, synergistic effects between different surfactants were utilized to improve foam stability against crude oil. Targeted to reservoir conditions of Daqing crude oil field, China (45 °C, salinity of 6778 mg L−1, pH = 8–9), foams stabilized by typical anionic surfactants fatty alcohol polyoxyethylene ether sulfate (AES) and sodium dodecyl sulfate (SDS) show low composite foam index (200–500 L s) and low oil tolerance index (0.1–0.2). However, the foam stability can be significantly improved by mixing the anionic surfactant with a sulfobetaine surfactant, which behaves as a foam stabilizer increasing the half-life of foams, and those with longer alkyl chain behave better. As an example, by mixing AES and SDS with hexadecyl dimethyl hydroxypropyl sulfobetaine (C16HSB) at a molar fraction of 0.2 (referring to total surfactant, not including water), the maximum composite foaming index and oil tolerance index can be increased to 3000/5000 L s and 1.0/4.0, respectively, at a total concentration between 3 and 5 mM. The attractive interaction between the different surfactants in a mixed monolayer as reflected by the negative βs parameter is responsible for the enhancement of the foam stabilization, which resulted in lower interfacial tensions and therefore negative enter (E), spreading (S), and bridging (B) coefficients of the oil. The oil is then emulsified as tiny droplets dispersed in lamellae, giving very stable pseudoemulsion films inhibiting rupture of the bubble films. This made it possible to utilize typical conventional anionic surfactants as foaming agents in foam flooding.  相似文献   

17.
The surfactant structure–performance relationship and application properties in enhanced oil recovery (EOR) for binary mixtures of anionic and cationic surfactants are presented and discussed. A polyoxyethylene ether carboxylate anionic surfactant was blended with a quaternary ammonium chloride cationic surfactant and tested for a high-temperature, low-salinity, and high-hardness condition as found in an oil reservoir. These mixtures were tailored by phase behavior tests to form optimal microemulsions with normal octane (n-C8) and crude oil having an API gravity of 48.05°. The ethoxy number of the polyoxyethylene carboxylate anionic surfactant and the chain length of the cationic surfactant were tuned to find an optimal surfactant blend. Interfacial tensions with n-C8 and with crude oil were measured. Synergism between anionic and cationic surfactants was indicated by surface tension measurement, CMC determination, calculation of surface excess concentrations and area per molecule of individual surfactants and their mixtures. Molecular interactions of anionic and cationic surfactants in mixed monolayers and aggregates were calculated by using regular solution theory to find molecular interaction parameters β σ and β M . Morphologies of surfactant solutions were studied by cryogenic TEM. The use of binary mixtures of anionic/cationic surfactants significantly broadens the scope of application for conventional chemical EOR methods.  相似文献   

18.
To enhance oil recovery in high‐temperature and high‐salinity reservoirs, a novel fatty amine polyoxyethylene ether diethyl disulfonate (FPDD) surfactant with excellent interfacial properties was synthesized. The interfacial tension (IFT) and contact angle at high temperature and high salinity were systematically investigated using an interface tension meter and a contact angle meter. According to the experimental results, the IFT between crude oil and high‐salinity brine water could reach an ultra‐low value of 10?3 mN m?1 without the aid of extra alkali at 90°C after aging. The FPDD surfactant has strong wettability alternation ability that shifts wettability from oil‐wet to water‐wet. The FPDD surfactant with a high concentration also has good emulsion ability under high‐temperature and high‐salinity conditions. Through this research work, we expect to fill the lack of surfactants for high‐temperature and high‐salinity reservoirs and broaden its great potential application area in enhanced oil recovery.  相似文献   

19.
Novel surfactant‐polymer (SP) formulations containing fluorinated amphoteric surfactant (surfactant‐A) and fluorinated anionic surfactant (surfactant‐B) with partially hydrolyzed polyacrylamide (HPAM) were evaluated for enhanced oil recovery applications in carbonate reservoirs. Thermal stability, rheological properties, interfacial tension, and adsorption on the mineral surface were measured. The effects of the surfactant type, surfactant concentration, temperature, and salinity on the rheological properties of the SP systems were examined. Both surfactants were found to be thermally stable at a high temperature (90 °C). Surfactant‐B decreased the viscosity and the storage modulus of the HPAM. Surfactant‐A had no influence on the rheological properties of the HPAM. Surfactant‐A showed complete solubility and thermal stability in seawater at 90 °C. Only surfactant‐A was used in adsorption, interfacial tension, and core flooding experiments, since surfactant‐B was not completely soluble in seawater and therefore was limited to deionized water. A decrease in oil/water interfacial tension (IFT) of almost one order of magnitude was observed when adding surfactant‐A. However, betaine‐based co‐surfactant reduced the IFT to 10?3 mN/m. An adsorption isotherm showed that the maximum adsorption of surfactant‐A was 1 mg per g of rock. Core flooding experiments showed 42 % additional oil recovery using 2.5 g/L (2500 ppm) HPAM and 0.001 g/g (0.1 mass%) amphoteric surfactant at 90 °C.  相似文献   

20.
We investigated the performance of a combination flooding system composed of hydrophobically associating polyacrylamide (HAPAM) and a mixed surfactant [fatty acid disulfonate anionic gemini surfactant (DMES) plus the nonionic surfactant Triton X‐100 (TX‐100)] under the reservoir conditions of the Shengli Chengdao oilfield. With 1800 mg/L HAPAM and 300–3000 mg/L mixed surfactant, the surfactant–polymer (SP) flooding system reached an ultralow oil–water interfacial tension, and the viscosity of the system was greater than 40 mPa s. After the solution was aged for 120 days, its viscosity was still more than 40 mPa s; this indicated a good aging stability. The core flooding experiments with different porous media permeabilities showed that the SP flooding system created a higher resistance factor and residual resistance factor. In addition, the indoor flooding experiments indicated that the SP combination flooding system increased the enhanced oil recovery by more than 30% over that of the original oil in place compared with the water flooding system. Therefore, it was feasible to use an SP flooding system in the Chengdao oilfield. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40390.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号