首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A novel PVDF dielectric nanocomposite was achieved by controlling phase morphology and incorporating conductive fillers simultaneously, and the mechanical, thermal, dielectric properties of the resultant dielectric nanocomposites were investigated. Mechanical analysis showed that incorporation of modified MWCNTs (MWCNTs-COOH) in the PVDF nanocomposites resulted in significant improvements on the tensile strength (Ts) and elasticity modulus (Em). When the filler content was 12 wt%, the Ts of MWCNTs-COOH/PVDF could reach 64.6 MPa. XRD test showed that the addition of MWCNTs-COOH and MWCNTs promoted the formation of β-phase of PVDF. DMA analysis showed that the glass-transition temperature of the PVDF nanocomposites slightly increases on loading of original MWCNTs and this effect was more pronounced on loading MWCNTs-COOH. The dielectric property analysis showed that the original MWCNTs were more likely to form local conductive networks in the PVDF matrix, promoting the electron displacement polarization, and improving the dielectric constant. When the contents of MWCNTs was 12 wt%, the percolation threshold was obtained and the dielectric constant (ε′) reached 286, which was 36 times of pure PVDF. Our work provides a simple way to fabricate polymer blends with excellent dielectric performances, good mechanical properties as well as good processing capability but low cost. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48463.  相似文献   

2.
In this study, shape memory is thermally induced in a series of graphene oxide (GO) filled poly(lactic acid)/thermoplastic polyurethane (PLA/TPU) blends, prepared via melt mixing process, and their shape recovery and shape fixity are measured, and the results are correlated with morphology, dynamic mechanical properties, crystallinity and creep recovery behavior. Morphological analysis by scanning and transmission electron microscopy reveals that the blends are immiscible, and GO platelets are mainly localized in the TPU phase of the blends, which lead to smaller and more elongated TPU droplets with improved interfacial adhesion being responsible for the improved shape recovery performance compared to the unfilled blend. A systematic enhancement found in storage and Young's modulus, tensile strength, creep resistance and creep recovery, and cold crystallinity as a result of GO inclusion are in agreement with the improved shape recovery, shape fixity and overall shape memory performance of the filled systems. The developed PLA/TPU/GO nanocomposites with highly improved mechanical properties can be utilized as a new class of environmentally friendly shape memory materials for a broad range of applications.  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs) were modified by an organo-silane in order to improve their dispersion state and stability in paraffin wax. A family of paraffin-based phase change material (PCM) composites filled with MWCNTs was prepared with different loadings (0, 0.1, 0.5, and 1 wt%) of pristine MWCNTs and organo-silane modified MWCNTs (Si-MWCNT). Structural analyses were performed by means of Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and rheological studies using temperature sweeps. Moreover, phase change transition temperatures and heat of fusion as well as thermal and electrical conductivities of the developed PCM nanocomposites were determined. The SEM micrographs and FTIR absorption bands appearing at approximately 1038 and 1112 cm−1 confirmed the silane modification. Differential scanning calorimetery (DSC) results indicate that the presence of Si-MWCNTs leads to slightly favorable enhancement in the energy storage capacity at the maximum loading. It was also shown that the thermal conductivity of the PCM nanocomposites, in both solid and liquid phases, increased with increasing the MWCNT content independent of the kind of MWCNTs by up to about 30% at the maximum loading of MWCNTs. In addition, the modification of MWCNTs made the samples completely electrically nonconductive, and the electrical surface resistivity of the PCMs containing pristine MWCNTs decreased with increasing MWCNTs loading. Furthermore, the rheological assessment under consecutive cyclic phase change demonstrated that the samples containing modified MWCNTs are more stable compared to the PCM containing pristine MWCNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48428.  相似文献   

4.
Biodegradable polylactic acid (PLA) was compounded with thermoplastic polyurethane (TPU) by twin‐screw extrusion at weight ratios of 90/10, 80/20, 70/30, and 60/40. The blends were investigated based on their phase morphology, thermal and mechanical properties, and shape memory properties. The tensile results showed that PLA was successfully toughened by TPU. When the TPU content was 40%, the elongation‐at‐break increased to 400%. The SEM morphology showed that TPU was dispersed uniformly in the PLA matrix; DMA and DSC results indicated that the two polymers were immiscible. Most interestingly, it was found that the blends exhibited a shape memory behavior and, unlike most of the existing shape memory polymers (SMPs), the PLA/TPU blends could be deformed at room temperature without an extra heating and cooling step. During the deformation process, TPU acted as a toughening agent that prevented the PLA/TPU blends from breaking; thus, the temporary shape could be kept and internal stress was stored in the blends. Upon heating to above the glass transition temperature of PLA (about 60°C), the deformed parts regained their original shapes quickly along with the release of the stress. POLYM. ENG. SCI., 55:70–80, 2015. © 2014 Society of Plastics Engineers  相似文献   

5.
This study focuses on the compatibilization of poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends by using 1,4 phenylene diisocyanate (PDI) for the first time, as the compatibilizer. Because of the potential interactions of diisocyanates with ? OH/? COOH, they are useful for reactive processing of PLA/TPU blends in the melt processing. To have insight on the reactively compatibilized structure of PLA/TPU blends, phase morphologies are observed by means of scanning electron microscopy. The mechanical, thermal, and rheological responses of the blends are investigated. The observations are that the brittle behavior of PLA changes to ductile with the addition of TPUs. The addition of PDI improves the tensile properties of the blends. The compatibilization action of PDI is monitored with DMA and rheological experiments. Cross‐over in the G′ and G″ curves of compatibilized blends indicates the relaxation of branches formed in the presence of PDI. The dispersed phase size of TPU decreases in PLA in the presence of PDI due to the improved compatibility. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40251.  相似文献   

6.
PLA and TPU were melt-blended to form shape memory bio-based blends with or without post-annealing effect. To the authors’ best knowledge, this is the first work to discuss the annealing effect on the PLA-based SMP blends. Annealed TPU showed regularly fractured surfaces unlike the macro-phase segregated domains for non-annealed TPU. After 3 h-annealing treatment, spherulites were observed for PLA, but not for TPU. The crystallinity of PLA increased, close to 3-fold increment, for annealed blends in comparison with non-annealed blends. The shape memory behaviors of PLA/TPU blends predeformed under three different predeformation temperatures (25, 80, 120 °C) were investigated. The annealing effect was helpful in enhancing the shape fixing ratio of the PLA/TPU (60/40) blend at high predeformation temperature of 120 °C in comparison with 25 °C. However, the suitable selection of the optimum predeformation temperature at 80 °C outweighed the annealing effect to attain the high shape fixing ratio, even in the case of non-annealed blends. The annealing effect often increased the perfection of crystal domains/interfaces and the larger crystal sizes, which would be detrimental to the molecular extensibility. The overall annealing effect on the shape recovery ratios were quite effective for both PLA/TPU blends of 80/20 and 60/40 without sacrificing the shape fixing ratios at the optimum predeformation temperature of 80 °C, attributing to the increased crystallinity of PLA and homogenized phase domains of TPU. Particularly, the annealing treatment did significantly increase the recovery ratio of the blends, more than 2-fold increment, especially for PLA/TPU (60/40) blend. At both lower or higher predeformation temperatures, the stress concentration between the increased crystalline domains and amorphous regions tended to dominate the annealing effect, leading to a negative contribution to the shape recovery processes.  相似文献   

7.
Thermoplastic elastomer (TPE) nanocomposites based on polyamide‐6 (PA6)/poly(epichlorohydrin‐co‐ethylene oxide) (ECO)/multiwall carbon nanotube (MWCNTs) were prepared by melt compounding process. Different weight ratios of ECO (20, 40, and 60 wt %) and two kinds of functionalized and non‐functionalized MWCNTs were employed to fabricate the nanocomposites. The morphological, rheological, and mechanical properties of MWCNTs‐filled PA6/ECO blends were studied. The scanning electron microscopy of PA6/ECO blends showed that the elastomer particles, ECO, are well‐dispersed within the PA6 matrix. The significant improvement in the dispersibility of the carboxylated carbon nanotubes (COOH‐MWCNTs) compared to that of non‐functionalized MWCNTs (non‐MWCNTs) was confirmed by transmission electron microscopy images. The tensile modulus of samples improved with the addition of both types of MWCNTs. However, the effect of COOH‐MWCNTs was much more pronounced in improving mechanical properties of PA6/ECO TPE nanocomposites. Crystallization results demonstrated that the MWCNTs act as a nucleation agent of the crystallization process resulted in increased crystallization temperature (Tc) in nanocomposites. Rheological characterization in the linear viscoelastic region showed that complex viscosity and a non‐terminal storage modulus significantly increased with incorporation of both types of MWCNTs particularly at low frequency region. The increase of rheological properties was more pronounced in the presence of carboxylic (COOH) functional groups, in the other words by addition of COOH‐MWCNTs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45977.  相似文献   

8.
To explore a potential method for improving the toughness of a polylactide (PLA), we used a thermoplastic polyurethane (TPU) elastomer with a high strength and toughness and biocompatibility to prepare PLA/TPU blends suitable for a wide range of applications of PLA as general‐purpose plastics. The structure and properties of the PLA/TPU blends were studied in terms of the mechanical and morphological properties. The results indicate that an obvious yield and neck formation was observed for the PLA/TPU blends; this indicated the transition of PLA from brittle fracture to ductile fracture. The elongation at break and notched impact strength for the PLA/20 wt %TPU blend reached 350% and 25 KJ/m2, respectively, without an obvious drop in the tensile strength. The blends were partially miscible systems because of the hydrogen bonding between the molecules of PLA and TPU. Spherical particles of TPU dispersed homogeneously in the PLA matrix, and the fracture surface presented much roughness. With increasing TPU content, the blends exhibited increasing tough failure. The J‐integral value of the PLA/TPU blend was much higher than that of the neat PLA; this indicated that the toughened blends had increasing crack initiation resistance and crack propagation resistance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A series of thermoplastic polyurethane (TPU)/poly(lactic acid) (PLA) blends are studied in terms of morphological, thermal, and rheological properties by scanning electron microscopy, differential scanning calorimetry, and rheometry. Using supercritical CO2 batch foaming, the foamability of the blends is systematically investigated. It is found that the 80/20 (wt %/wt %) TPU/PLA blend (TPU80%) shows vastly enhanced foamability over a wide range of foaming conditions to produce foams with a myriad of cellular morphology. The foamability enhancement results from the improved cell nucleation and growth, and the changes in the polymer microstructure. Compared to elastic TPU foams, the TPU80% retain their shapes 3.4 times better. Mechanism for the enhanced stability is proposed and verified using Kohlrausch–Williams–Watts model. The materials developed in the study and the mechanistic understanding of the shape fixation process may facilitate the advancement of elastomeric foams in conventional use as well as in novel shape memory applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47416.  相似文献   

10.
Diffusion and sorption of methyl ethyl ketone and tetrahydrofuran through fluoroelastomer‐clay nanocomposites were investigated in the temperature range of 30–60°C by swelling experiments. Slightly non‐Fickian transport behavior was found for these nanocomposites, having variation of type of nanoclay and loading. Different transport parameters depend on the size and shape of the penetrant molecules. The results were used to study the effect of nanoclay on the solvent transport‐properties of nanocomposites and their interactions with solvents. The diffusion coefficient of methyl ethyl ketone at 30°C for neat rubber was 1.43 × 10?8 cm2 s?1, while those of the unmodified and the modified clay filled samples at 4 phr loading were 0.24 × 10?8 and 0.50 × 10?8 cm2 s?1, respectively. At 8 and 16 phr loading of the unmodified clay, it was found to be 0.44 × 10?8 and 0.64 × 10?8 cm2 s?1, respectively. The samples were also reswelled after deswelling. Surprisingly, transport behavior became Fickian on reswelling. Interestingly, ratio of diffusion coefficients of the filled system to the neat system was found to be almost same for the first time swelling and reswelling experiments. The results showed that better polymer‐clay interaction in the case of the unmodified‐clay filled nanocomposites is responsible for enhanced solvent‐resistance property. From the permeation data, for the first time, aspect ratio of nanoclays in different composites was calculated and found to have good correlation with the morphology data obtained from transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
We describe the preparation, characterization and physical properties of multiwalled carbon nanotube (MWCNT)‐filled epoxidized natural rubber (ENR) composites. To ensure better dispersion in the elastomer matrix, the MWCNTs were initially subjected to aminopropyltriethoxysilane (APS) treatment to bind amine functional groups (?NH2) on the nanotube surface. Successful grafting of APS on the MWCNT surface through Si–O–C linkages was confirmed using Fourier transform infrared spectroscopy. Grafting of APS on the MWCNT surface was further corroborated using elemental analysis. ENR nanocomposites with various filler loadings were prepared by melt compounding to generate pristine and APS‐modified MWCNT‐filled elastomeric systems. Furthermore, we determined the effects of various filler loadings on the rheometric, mechanical, electrical and thermal degradation properties of the resultant composite materials. Rheometric cure characterization revealed that the torque difference increased with pristine MWCNT loading compared to the gum system, and this effect was more pronounced when silane‐functionalized MWCNTs were loaded, indicating that this effect was due to an increase in polymer–carbon nanotube interactions in the MWCNT‐loaded materials. Loading of silane‐functionalized MWCNTs in the ENR matrix resulted in a significant improvement in the mechanical, electrical and thermal degradation properties of the composite materials, when compared to gum or pristine MWCNT‐loaded materials.© 2013 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Functionalized graphene sheet (FGS) was recently introduced as a new nano‐sized conductive filler, but little work has yet examined the possibility of using FGS as a nanofiller in the preparation of polymer nanocomposites. In particular, there are currently no published papers that evaluate polyurethane/FGS nanocomposites. The purpose of this study was to prepare a polyurethane/FGS nanocomposite and examine the morphological and physical properties of the material. RESULTS: A cast nanocomposite film was prepared from a mixture of thermoplastic polyurethane (TPU) solution and FGS suspended in methyl ethyl ketone. The FGS dispersed on the nanoscale throughout the TPU matrix and effectively enhanced the conductivity. A nanocomposite containing 2 parts of FGS per 100 parts of TPU had an electrical conductivity of 10?4 S cm?1, a 107 times increase over that of pristine TPU. The dynamic mechanical properties showed that the FGS efficiently reinforced the TPU matrix, particularly in the temperature region above the soft segment melt. CONCLUSION: Our results show that FGS has a high affinity for TPU, and it could therefore be used effectively in the preparation of TPU/FGS nanocomposites without any further chemical surface treatment. This indicates that FGS is an effective and convenient new material that could be used for the modification of polyurethane. It could also be used in place of other nano‐sized conductive fillers, such as carbon nanotubes. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
s‐Triazine‐based hyperbranched polyurethanes (HBPUs) with different hard segments were synthesized by A2 + B3 approach. Various kinds of multiwalled carbon nanotube (MWNT) nanocomposites with HBPU were prepared to investigate an impact of hyperbranched polymer on dispersion of MWNTs in the polymer matrix and the resulting properties of nanocomposites. Synthesized HBPUs were characterized using FTIR and NMR measurements. The highly branched structures were found very effective in enhancing the pristine MWNT dispersion in the polymer matrix. As a result, the MWNT‐reinforced HBPU nanocomposites showed a steep increase in the yield stress and modulus and enhanced shape memory effect with an increase of hard segment and MWNT loading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The effect of CNFs on hard and soft segments of TPU matrix was evaluated using Fourier transform infrared (FTIR) spectroscope. The dispersion and distribution of the CNFs in the TPU matrix were investigated through wide angle X‐ray diffraction (WAXD), field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM), polarizing optical microscope (POM), and atomic force microscope (AFM). The thermogravimetric analysis (TGA) showed that the inclusion of CNF improved the thermal stability of virgin TPU. The glass transition temperature (Tg), crystallization, and melting behaviors of the TPU matrix in the presence of dispersed CNF were observed by differential scanning calorimetry (DSC). The dynamic viscoelastic behavior of the nanocomposites was studied by dynamical mechanical thermal analysis (DMTA) and substantial improvement in storage modulus (E') was achieved with the addition of CNF to TPU matrix. The rheological behavior of TPU nanocomposites were tested by rubber processing analyzer (RPA) in dynamic frequency sweep and the storage modulus (G') of the nanocomposites was enhanced with increase in CNF loading. The dielectric properties of the nanocomposites exhibited significant improvement with incorporation of CNF. The TPU matrix exhibits remarkable improvement of mechanical properties with addition of CNF. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
Few thermoplastic polyurethane (TPU) blending materials are reported to tune shape‐memory capability, self‐healing ability, and recyclability as well as mechanical property due to the different requirement of phase morphologies. This work focuses on how reversible epoxy domains affect the structures and properties of TPUs that contain disulfide bonds in main chains. The blended epoxy oligomers with dangling furan groups are miscible with the TPU. Self‐healing efficiency can be improved by such miscible epoxy oligomers that are also beneficial for shape recovery but harmful for shape fixation. In the presence of bis(4‐maleimidophenyl)methane (BMI), crosslinked epoxy domains phase separate from the TPU matrix to form microscale domains after the Diels–Alder (DA) reaction between furan groups and maleimide groups in BMI. Elastic modulus and tensile strength of TPU are greatly improved in comparison with pristine TPU and TPU/epoxy blends without BMI. The phase‐separated domains deteriorate the self‐healing, and the presence of phase‐separated microdomains facilitates the shape fixation but deteriorates the shape recovery. This work is not only useful to further understand the relation between structures of polymer blends with intelligent features, but also offers a useful approach to adjust the properties and capabilities of TPU in a cost‐effective manner.  相似文献   

16.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Multiwalled carbon nanotubes (MWCNTs) filled thermoplastic vulcanizate (TPV) dielectric elastomer based on polypropylene (PP)/ethylene-propylene-diene monomer blends were fabricated via a simple melt compounding. MWCNT could be selectively distributed in PP matrix which induced by the dynamic vulcanization reaction. By reducing the rotor speed of melting blending to 60 rpm, the MWCNT network formation can be effectively inhibited, which have been verified by a higher volume resistivity (above 109 Ω cm). With increasing the MWCNTs loading to 4.1 vol%, a maximum increase, 423.4% (from 3.04 to 12.87), of the dielectric constant have been achieved for TPV/MWCNTs elastomer at 103 Hz, while the dielectric loss is still lower than 0.072 at 101–103 Hz. Meanwhile, with various MWCNTs loading, the tensile recovery of these series TPV elastomer does not change anymore, resulting an excellent rebound resistance. The TPV elastomer exhibits an enhanced dielectric performance and balanced elastic recovery performance, providing a simple and scalable melt compounding approach to fabricate high-performance dielectric elastomer.  相似文献   

18.
Polylactides with high and low L ‐isomeric ratios of the lactate units (PLA99.0 and 77.0, where the numbers correspond to the L ‐ratios) were melt‐blended to analyze the changes in properties and biodegradability with the polymer blend. The crystallinity of the blends was almost similar to that of the blends of PLLA and PDLLA. The glass transition behavior supported the compatibility of both polymers. The glass transition behavior was indicative of a compatible nature of both polymers. The tensile modulus of the blends was almost identical irrespectively of the blend ratio, while their tensile strength decreased with decreasing composition of PLA99.0. Above Tg, the storage modulus of the blends dropped from 2–3×109 Pa to 1–3×106 Pa and then increased to a different level depending on the crystalline nature of the blends. The biodegradability of the blends increased with decreasing composition of PLA99.0. This difference in degradability can be well explained by our random packing model of local helices of the L ‐sequenced chains for the L ‐rich PLA samples.  相似文献   

19.
We demonstrate a method that involves melt blending of polycarbonate (PC) and melt‐blended acrylonitrile butadiene styrene (ABS) with multiwall carbon nanotubes (MWCNTs) to prepare electrically conducting PC/MWCNT nanocomposites at significantly low MWCNT loading. The partial solubility of ABS in PC led to a selective dispersion of the MWCNTs in the ABS phase after melt‐blending PC and ABS. Thus, a sudden rise in electrical conductivity (∼108 orders of magnitude) of the nanocomposites was found at 0.328 vol% of MWCNT, which was explained in terms of double percolation phenomena. By optimizing the ratio of PC and the ABS–MWCNT mixture, an electrical conductivity of 5.58 × 10−5 and 7.23 × 10−3 S cm−1 was achieved in the nanocomposites with MWCNT loading as low as 0.458 and 1.188 vol%, respectively. Transmission electron microscopy revealed a good dispersion and distribution of the MWCNTs in the ABS phase, leading to the formation of continuous MWCNT network structure throughout the matrix even at very low MWCNT loading. Storage modulus and thermal stability of the PC were also increased by the presence of a small amount of MWCNTs in the nanocomposites.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
Thermal energy storage (TES) materials constituted by a microencapsulated paraffin having a melting temperature of 6°C and a thermoplastic polyurethane (TPU) matrix were prepared through fused deposition modeling. Scanning electron microscope (SEM) micrographs demonstrated that the microcapsules were homogeneously distributed within the matrix, with a rather good adhesion within the layers of 3D printed specimens, even at elevated concentrations of microcapsules. The presence of paraffin capsules having a rigid polymer shell lead to a stiffness increase, associated to a decrease in the stress and in the strain at break. Tensile and compressive low-cycles fatigue tests showed that the presence of microcapsules negatively affected the fatigue resistance of the samples, and that the main part of the damage occurred in the first fatigue cycles. After the first 10 loading cycles at 50% of the stress at break, a decrease in the elastic modulus ranging from 60% for neat TPU to 80% for composite materials was detected. This decrease reached 40% of the original value at 90% of the stress at break after 10 cycles. Differential scanning calorimetry tests on specimens after fatigue loading highlighted a substantial retention of the original TES capability, in the range of 80%–90% of the pristine value, even after 1000 cycles, indicating that the integrity of the capsules was maintained and that the propagation of damage during fatigue tests took probably place within the surrounding polymer matrix. It could be therefore concluded that it is possible to apply the developed blends in applications where the materials are subjected to cyclic stresses, both in tensile and compressive mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号