首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
This study aims at developing Groundwater Quality Indices (GQIs) that constitute a reliable tool in defining aquifer vulnerability. For this purpose, water quality sampling campaigns were conducted on 60 groundwater wells during most vulnerable periods of early and late summer to ensure the representativeness of the targeted GQI under worst case conditions. The samples were tested for various water quality indicators, which were then used to develop the GQIs through GIS-based mapping with spatial geostatistical analysis. The results contribute in filling a gap in GQI definition and form a basis for planning effective water quality management towards sustainable exploitation of groundwater resources particularly during summer periods when recharge is limited.  相似文献   

2.
This paper focuses on the effects of tidal fluctuations on groundwater in the Konan groundwater basin of Japan and the methodology for estimating aquifer parameters by the tidal response technique. The field investigation revealed that the twowells (H-5 and I-2) near the coastline are significantly affectedby seawater intrusion, and the water quality is not suitable for most beneficial uses. The tidal cycle further aggravates the groundwater contamination by seawater intrusion into the basin. Using the tidal response model, the aquifer hydraulic conductivity(K) at these two sites is estimated to be 4.5 × 10-3 and 5.1 × 10-3 m s-1, respectively. It was also indicated by the inverse modeling that the tidal fluctuations affect the study area up to about 1 km from the coastline. Further, the tidal efficiency was determined in the range of 20 to 21% at Site I-2 and 38 to 41% at Site H-5. The estimates of the storage coefficient (S) based on the time lag equation were not found reliable for the phreatic aquifer. However, the tidal efficiency-factor equation yielded reliable S estimates in this study. Finally, it is concluded that the tidal response techniqueis effective and reliable for estimating aquifer parameters in the coastal region, and that the Konan basin must be managed judiciously to ensure sustainable utilization of its vital groundwater resources.  相似文献   

3.
Ecological water use (EWU) is urgent in need in the lower reaches of Tarim River in China. Estimation of water amount for EWU is depending on some parameters and modeling. EWU is mainly consists of two parts in no runoff area in the basin, i.e. total water amount for restoration groundwater table and total stand water amount of the all river courses. The former is including water amount for restoration of groundwater table, lateral discharge and evaporation of water surface. The estimated values are 8.18 × 108 m3, 0.68 × 108 m3/a and 0.132 × 108 m3/a respectively. Based on the groundwater depth rising 4.0 meters requiring 5 years, the total water amount for restoration groundwater table is 2.448 × 108 m3/a. The latter, i.e., total stand water amount is 1.992 × 108 m3/a. However, the development of water management measures could alleviate the issue and lead to sustainable EWU in the lower reaches of Tarim River.  相似文献   

4.
多元统计方法能同时对多个变量进行分析研究,是一种可用于地下水水化学特征相关分析的有效工具。基于12组水样的9项指标,运用多元统计方法系统分析了新疆巴里坤盆地地下水水化学特征及其影响因素。结果表明:该地区内主要分布低矿化度的HCO3·SO4-Ca·Na型水(占总取样点的33.3%)和HCO3·SO4-Ca型水(占总取样点的25.0%),地下水中各离子的空间变异性为中等以上。地下水水化学特征主要受以Na+、Ca2+、Mg2+、Cl-、SO42-、总硬度(TH)、溶解性总固体(TDS)为主要荷载变量的蒸发浓缩作用和以HCO-3为主要荷载变量的溶滤作用影响,两种作用的贡献率分别达76.17%和14.87%。研究结果可为当地地下水资源的保护和可持续利用提供科学依据。  相似文献   

5.
Impact of Urbanization on the Hydrology of Ganga Basin (India)   总被引:4,自引:3,他引:1  
Large scale emigrations from rural areas to urban areas and population growth have been uninterrupted and accelerating phenomena in parts of Ganga basin, where urbanization is increasing at an unprecedented rate. Urban agglomeration is causing radical changes in groundwater recharge and modifying the existing mechanisms. Majority of the cities are sited on unconfined or semi confined aquifers depend upon river water and groundwater for most of their water supply and disposal of most of their liquid effluents and solid residues to the rivers and ground. There has also been an inevitable rise in waste production. Drainage of surface water has been disrupted as the small natural channels and low lying areas have been in filled, often with municipal waste. Total water potential of the Ganga basin including surface water potential and ground water potential is around 525.02 km3 and 170.00 km3 respectively. Basin supports approximately 42% of the total population in India. Water tables are declining at approximately an average of 0.20 m per year in many parts of the basin and there is a trend of deteriorating groundwater quality. The demand of water has been increased many folds and most of the areas are highly reliant upon the groundwater to meet this increasing demand for water, but unfortunately degradation of groundwater both in terms of quantity and quality has deteriorated the situation. Studies shows that change in climate may increase temperature by 2 to 6°C and can reduce precipitation up to 16%, which could reduce the groundwater recharge by 50%. In densely populated Ganga basin urban drainage consumes a high proportion of the investments into urban infrastructure and needs integrated approach for the sustainable development of water management, water education regarding conservation and pollution caused by urbanization.  相似文献   

6.
Groundwater is the only source of drinking water for the inhabitants of the Kalahari. Thus understanding spatial and temporal variations in groundwater recharge is very important and a regional-scale water balance model has therefore been set up for a 209,149 km2 catchment in north-eastern Namibia and north-western Botswana. The model has a spatial resolution of 1.5 × 1.5 km, daily model time-steps, and climatic input parameters for 19 years are used. The distributed, GIS-based, process-oriented, physical water balance model (MODBIL) used in this study considers the major water balance components: precipitation, evapotranspiration, groundwater recharge, and surface runoff/interflow. Mean precipitation for the study area is 409 mm a−1, while mean actual evapotranspiration is 402 mm a−1 and mean groundwater recharge is 8 mm a−1 (2% of mean annual precipitation). The recharge pattern is mainly influenced by the distribution of soil and vegetation units. Groundwater recharge shows a high inter- and intra-annual variability, but not only the sum of annual precipitation is important for the development of groundwater recharge; a large amount of precipitation in a relatively short period is more important. Published independent data from the Kalahari in Namibia, Botswana and the Southern African region under similar climatic conditions are used to verify the modelling results.  相似文献   

7.
In this study, total coliforms, thermotolerant coliforms, Escherichia coli and groundwater nitrate concentration were monitored at 127 groundwater sampling points (only 62 water points for bacteriological parameters) located in the southern part of Abidjan District. Each water sampling location was sampled in March and July 2007, representing respectively the long dry season and the long wet season. Geostatistical methods were used to analyze the spatial variability of nitrates and the groundwater nitrate pollution risk. The maximum seasonal content of total coliforms and thermotolerant coliforms ranged from 400 to 1000 CFU/100 mL and from 200 to 500 CFU/100 mL respectively. Moreover, 94% of these locations presented traces of bacteriological contamination. This contamination was mainly recorded during the rainy period. The degree of correlation between bacterial abundance and chemical parameters is variable. Nitrites, ammonium and potassium favoured coliform abundance. In the 127 water points, groundwater nitrate concentrations ranged from 4 to 198 mg L?1 and were log-normally distributed in the study area. The groundwater contamination risk map indicated that the strongly urbanized west side of the site presented a high probability of exceeding the WHO drinking water standard (50 mg L?1NO3?).  相似文献   

8.

In semi-arid regions, the deterioration in groundwater quality and drop in water level upshots the importance of water resource management for drinking and irrigation. Therefore geospatial techniques could be integrated with mathematical models for accurate spatiotemporal mapping of groundwater risk areas at the village level. In the present study, changes in water level, quality patterns, and future trends were analyzed using eight years (2012–2019) groundwater data for 171 villages of the Phagi tehsil, Jaipur district. Kriging interpolation method was used to draw spatial maps for the pre-monsoon season. These datasets were integrated with three different time series forecasting models (Simple Exponential Smoothing, Holt's Trend Method, ARIMA) and Artificial Neural Network models for accurate prediction of groundwater level and quality parameters. Results reveal that the ANN model can describe groundwater level and quality parameters more accurately than the time series forecasting models. The change in groundwater level was observed with more than 4.0 m rise in 81 villages during 2012–2013, whereas ANN predicted results of 2023–2024 predict no rise in water level?>?4.0 m. However, based on predicted results of 2024, the water level will drop by more than 6.0 m in 16 villages of Phagi. Assessment of water quality index reveals unfit groundwater in 74% villages for human consumption in 2024. This time series and projected groundwater level and quality at the micro-level can assist decision-makers in sustainable groundwater management.

  相似文献   

9.
Quantifying and interpreting the impacts that land use/cover change (LUCC) have on hydrology at basin scales are of great significance for the sustainable development of watershed ecosystems, water resources, and land management. The Soil and Water Assessment Tool was used to establish the regional model. The Min River watershed was divided into 236 sub‐basins, and simulations showed the spatial distribution of runoff in each sub‐basin with GIS‐based image displays. We set five scenarios to investigate the negative hydrological effects characterized by reductions in the water yield. From 1995 to 2004, the effect of simulated mean annual runoff caused by LUCC was ?12.61 m3/s and the climate variability caused ?67.61 m3/s. From 2005 to 2014, the hydrological effect caused by LUCC was ?2.38 m3/s and the climate variability caused ?58.53 m3/s. The elevation, Shannon's diversity index, largest patch index, and interspersion and juxtaposition index were all characterized by strong relationships with the sub‐basin outlet flows (adjusted R2 = 0.572) using multivariate stepwise regression analysis. Redundancy analysis further proved that the reduction in grassland has led to a decrease in vegetation dominance while large increase in cultivated and residential lands has led to a higher degree of landscape richness and fragmentation, which has caused the reduced water yield. The restoration of grassland vegetation, as well as urban and agricultural water usage should be the primary focus of flow recovery.  相似文献   

10.
Research on tropical fish ecology in South America is focused mainly on the effect of environmental variables on aquatic organisms. Physical, chemical and biological characteristics of water measured at a local scale (local variables) are used, although geomorphological and hydrological factors measured at a regional scale (regional variables), as well as temporal and spatial heterogeneity, can also be considered. However, the use of this multi‐scale approach increases the perceived complexity, heterogeneity and variability of rivers. Thus, it is important to determine the magnitude of habitat variability and those parameters having the greatest influence on it. In this study, 28 stations distributed on 16 different rivers in French Guiana were sampled during high water at a meso spatial scale. Physical features of the rivers were sampled along an 800‐m stretch, where nine transversal transects were established on the main channel. At each river, 17 local and six regional variables were measured. Local variables relating to the physical characteristics of the channel bank and main channel and regional variables characterizing the whole basin and the position of the station in the basin were qualitatively and quantitatively described. All variables were submitted to multivariate analysis in order to determine their relative contribution to total variance. Two quantitative regional variables (drainage area upstream from station and river drainage basin), five quantitative local variables (channel width, water temperature, channel depth, Secchi transparency and conductivity) and one qualitative local variable (channel substrate) were shown to differentiate the 16 rivers sampled. This result shows the poor contribution of qualitative variables compared with quantitative ones. Gradual change in qualitative variables is probably responsible for this poor contribution to the total variance; thus, the use of such variables is not possible for spatial habitat differentiation in this study. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号