首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of otolith elemental composition as a natural tag has emerged as a powerful tool for managing and understanding the ecology of marine fish populations. The approach remains relatively untested in fresh waters, so we examined its utility for reconstructing habitat use and wetland nursery origin in Lake Superior. We analyzed the otolith margin of adult yellow perch, Perca flavescens, as an indicator of recently occupied habitat, and the juvenile region of the otolith core as an indicator of nursery area. To characterize elemental fingerprints, all otolith samples were analyzed for Ca and 13 minor and trace elements using mass spectrometry. We found differences in the otolith concentrations of several elements between yellow perch inhabiting coastal wetlands and those inhabiting the adjacent nearshore waters of Chequamegon Bay. The most striking difference was the high concentration of Sr in the sagittal margins of wetland-caught fish relative to those captured in the bay. Based on differences in otolith Sr concentrations alone, fish from bay and wetland habitats could be distinguished with 100% accuracy. We also found that elemental fingerprints derived from otolith cores of adult yellow perch were similar among fish captured from wetlands adjacent to Chequamegon Bay but quite distinct for one site outside of the bay, suggesting these fish came from a separate population from those in Chequamegon Bay. Overall, these results encourage us that elemental fingerprinting techniques will be useful for estimating the relative importance of different coastal wetland habitats to wetland-dependent species in the Great Lakes.  相似文献   

2.
A Habitat Productivity Index (HPI) and an Index of Biotic Integrity (IBI) were compared as measures of habitat productive capacity for fish assemblages in nearshore areas of Lake Erie and Lake Ontario. Forty-three species of fishes were captured by boat electrofishing at three areas with contrasting habitats—coastal wetlands, harbor breakwalls, and exposed shorelines. HPI and IBI were correlated among samples as expected, but HPI was most closely correlated with fish community biomass, whereas IBI was correlated with fish species richness. The HPI and IBI indices differed significantly among samples from the three habitat areas in both lakes, reflecting the differences in the abundance and composition of fish catches. The ranking of habitat productive capacity depended on the index: species richness and IBI were highest at the coastal wetlands, and biomass and HPI were highest at the harbors. Results support the contention that to effectively determine habitat productive capacity, both the production and diversity characteristics of the fish community need to be evaluated.  相似文献   

3.
Understanding stock structure and habitat use is important for sustainable fisheries management and conservation of genetic and phenotypic diversity. In eastern Lake Michigan, yellow perch Perca flavescens is found in both the nearshore region of Lake Michigan proper and drowned river mouth (DRM) lakes, small estuary-like systems directly connected to Lake Michigan. Recent genetic analyses suggest complex stock structure between these habitats and the potential migration of Lake Michigan yellow perch into the profundal zone of DRM lakes. We quantified carbon (δ13C) and oxygen (δ18O) stable isotope ratios of yellow perch otolith cores to index natal origins, and measured muscle δ13C, nitrogen (δ15N), δ18O, and hydrogen (δ2H) isotope ratios to reflect recent diet and habitat use. Stable isotope ratios of otolith cores and muscle samples support the existence of resident populations in nearshore Lake Michigan and DRM lakes, as well as Lake Michigan migrants using DRM lakes. Most fish caught in DRM lakes that had natal and recent stable isotope values similar to Lake Michigan fish were collected during fall in DRM lake profundal zones. Comparison of otolith core and muscle stable isotope ratios of individual yellow perch suggest that individuals that recently migrated to DRM lakes also spent early life in Lake Michigan. Differential habitat use patterns of yellow perch in eastern Lake Michigan may have important implications for harvest estimates and fishing regulations. Migration by Lake Michigan fish into DRM lakes does not appear to be related to reproduction, and the underlying benefits of these migrations remain unclear.  相似文献   

4.
Information on the habitat associations of larval fishes in Great Lakes coastal wetlands (GLCW) is necessary to assist fisheries managers in the protection and management of critical habitats. Coastal wetlands serve as spawning grounds, nurseries, and forage areas for many important Great Lakes fish species. To determine the distribution of larval fish in coastal wetlands with regard to location and vegetation characteristics, we used a larval tow-sled to sample four macrohabitat types (sand-spit, inner and outer marsh, and river) across sparse, moderate, and dense vegetation densities (microhabitat) in Allouez Bay wetland near Lake Superior's western end. We captured 4,806 larval fish representing 16 species between May and August 1996. Allouez Bay is typical of other GLCW in species number and composition. The three most abundant species were spottail shiner (59% of the total catch), yellow perch (20% of total catch), and white sucker (10% of total catch). Significantly more fish and fish species (repeated-measures ANOVA) (p < 0.05) were caught at the sand-spit relative to the outer or inner marsh macrohabitats. Nearly all of the cyprinids and centrarchids were caught at the sand-spit habitat primarily in dense vegetation, while the majority of white suckers and trout-perch were caught in the river in sparse or moderate vegetation. Our study provides evidence for species-specific macrohabitat and microhabitat associations of larval fish in coastal wetlands. We suggest these associations are largely determined by adult spawning requirements and life-history strategies.  相似文献   

5.
We examined factors that influence the energy base of Great Lakes coastal wetland food webs across a basin-wide gradient of landscape disturbance. Wetland nutrient concentrations were positively correlated with a principal components-based metric of agricultural practices. Hydraulic residence time influenced the energy base of wetland food webs, with high residence-time systems based mostly on plankton and low residence-time systems based mostly upon benthos. In systems with plankton, the importance of planktonic carbon to the resident fish community generally increased with residence time. A stronger relationship was apparent with an index of nutrient loading that combined residence time and nutrient concentration as the predictor (R2 = 0.289, p = 0.026). Shifts toward plankton-based food webs occurred at relatively low levels of loading. In riverine wetlands without plankton, contributions of detrital carbon to fish communities decreased significantly in response to watershed disturbance that reflected nutrient loading. In a third class of wetlands the wetland-resident fish communities were not entirely supported by within-wetland carbon sources and were significantly subsidized by nearshore habitats, which provided 35 (± 22) to 73 (± 9) % of fish community carbon. When lake-run migrant fish were included in the analyses, nearshore subsidies to all 30 wetland food webs ranged from 3 (± 2) to 79 (± 12) %. We obtained similar ranges when examining nearshore contributions to a single wetland species, northern pike. These results illustrate the spatial scale and the degree to which the energetics of coastal wetland food webs are influenced by interactions with their watersheds and Great Lakes.  相似文献   

6.
Coastal wetlands in the Laurentian Great Lakes are critical habitats for supporting fish diversity and abundance within the basin. Insight into the coupling of biodiversity patterns with habitat conditions may elucidate mechanisms shaping diverse communities. Within coastal wetlands, water depth as well as fluctuations in lake-wide water levels over inter-annual timescales, both have the potential to influence fish communities. Water level fluctuation can influence fish habitat structure (e.g., vegetation) in Great Lakes coastal wetlands, but it is unclear how water depth and lake-wide water level fluctuations affect fish community composition and diversity. Using β dissimilarity indices and multivariate ordination techniques, we assessed fish community structure among bulrush (Schoenoplectus acutus)-dominated wetlands in Saginaw Bay, Lake Huron, USA. We examined whether community structure was related to wetland water depth at the time of sampling and whether fish communities were more similar among years with similar Lake Huron water levels. Results suggested relatively high levels of both spatial (among wetlands) and temporal (among year) community dissimilarity that was driven primarily by species turnover. Thus, variability in water depths among wetlands and in Lake Huron water levels among years likely both contribute to regional fish diversity. Further, fish abundance and alpha diversity were positively correlated with wetland water depth at the time of sampling. Both climate change and anthropogenic water level stabilization may alter the magnitude and timing of water level fluctuations in the Great Lakes. Our data suggest that these changes could affect local fish community composition and regional fish diversity.  相似文献   

7.
Great Lakes coastal wetlands provide critical habitat and food resources for more species than any other Great Lakes ecosystem. Due to past and current anthropogenic disturbances, coastal wetland area has been reduced by >50% while remaining habitat is frequently degraded. Invasive mute swans have contributed to the degradation of coastal wetlands by removing submergent vegetation and competitively excluding native species from breeding areas and food resources. Despite current control practices, mute swan population estimates in Michigan are ~8000, comparable to population estimates in the entire Atlantic Flyway of North America. We collected local abiotic data and adjacent land cover data at 3 scales from 51 sites during 2010 and 2011 and conducted 2 mute swan detection surveys each year during the summer and fall. We developed a single-species, single-season occupancy-based habitat suitability model to determine current and potential mute swan habitat among Great Lakes coastal wetlands. We found mute swans occupied heterotrophic coastal wetlands adjacent to urban areas, which were high in ammonium and oxidation-reduction potential and low in nitrates, dissolved oxygen, and turbidity. Our model provides managers with a valuable tool for rapidly identifying mute swan habitat areas for control efforts, particularly the need for targeting mute swan populations in or near urbanized areas. Our model will also aid managers in monitoring areas that mute swans may invade and prioritizing coastal wetland areas for restoration efforts.  相似文献   

8.
Breeding birds and anurans (frogs and toads) in coastal wetlands of Green Bay, Lake Michigan vary dynamically with changing water levels, habitat type, and geography. We describe species assemblages over a seven-year period (2011–2017) beginning with historic low water levels followed by an increase in average lake level of 0.85?m. In general, species richness and abundance of marsh-obligate species responded positively to increasing water levels, although several species of shallow wetlands (sandhill crane, sedge wren, swamp sparrow, and American toad) showed the opposite trend. Anuran assemblages were more diverse in the middle and upper bay, coinciding with a well-established nutrient gradient from the hypereutrophic lower bay to more oligotrophic waters of the upper bay. Three marsh-obligate bird species (black tern, sandhill crane, and sedge wren) were significantly more abundant in the middle or upper bay while sora, American coot, and common gallinule were more abundant in the eutrophic lower bay. Our findings have several important implications for conservation. Inland wetlands near the coast (including diked wetlands) might play a key ecological role by providing refugia for some species during low water years. However, the importance of shallow coastal wetlands and nearshore gradients of wetland habitat might be overlooked during low water years; when high water returns, these areas can become extremely productive and species-rich.  相似文献   

9.
Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un‐notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

10.
Fish community data were collected to investigate the role of wetlands in supporting fish communities of protected embayments in Lake Ontario. Wetland and deeper, more open, littoral sites were sampled in five protected embayments using gill nets, fyke nets, minnow traps, and electrofishing gear during the summers of 2001 and 2002. Pooled gear data were used to analyze community composition, size frequency, and species richness. We found that even within protected embayments where community composition of both habitats is similar, wetlands support a community of fish different in species dominance and size structure than littoral embayment habitats. The abundance of young-of-year fish suggests that wetlands support fish populations by providing important nursery habitat. The similarity in fish community composition between wetland and littoral habitats indicates that wetlands remain important in supporting a subset of the embayment fish community. These results demonstrate that both wetlands and littoral areas in embayments are valuable and intensively utilized fish habitats that should receive special consideration in ecosystem management plans for the Great Lakes.  相似文献   

11.
Great Lakes coastal wetlands (GLCWs) provide critical fish habitat. The invasion of GLCWs by hybrid and narrow-leaved cattail, Typha × glauca and Typha angustifolia (hereafter Typha), homogenizes wetlands by out-competing native plant species and producing copious litter. However, the effect of this invasion on fish communities is little known. To measure the effect of Typha on fishes, we established plots in Typha invaded and native wetland emergent zones in a northern Lake Michigan coastal wetland, and measured environmental variables, plants, and fishes in each zone over two summers. Dissolved oxygen and water temperature were significantly lower in invaded compared to native plots. Invaded plots were dominated by Typha and its litter; whereas. sedges (Carex spp.) were the most abundant species in native plots. Fish abundance and species richness were significantly lower in Typha compared to native wetland plots. The Typha fish community was dominated by hypoxia tolerant mudminnow whereas other small, schooling, fusiform species such as cyprinids and fundulids were absent. These results illustrate the negative impact of a dominant invasive plant on Great Lakes fishes that is expected to be found in Typha invasions in other GLCWs.  相似文献   

12.
The relative importance of Great Lake, ecoregion, wetland type, and plant zonation in structuring fish community composition was determined for 61 Great Lakes coastal wetlands sampled in 2002. These wetlands, from all five Great Lakes, spanned nine ecoregions and four wetland types (open lacustrine, protected lacustrine, barrier-beach, and drowned river mouth). Fish were sampled with fyke nets, and physical and chemical parameters were determined for inundated plant zones in each wetland. Land use/cover was calculated for 1- and 20-km buffers from digitized imagery. Fish community composition within and among wetlands was compared using correspondence analyses, detrended correspondence analyses, and non-metric multidimensional scaling. Within-site plant zonation was the single most important variable structuring fish communities regardless of lake, ecoregion, or wetland type. Fish community composition correlated with chemical/physical and land use/cover variables. Fish community composition shifted with nutrients and adjacent agriculture within vegetation zone. Fish community composition was ordinated from Scirpus, Eleocharis, and Zizania, to Nuphar/Nymphaea, and Pontederia/Sagittaria/Peltandra to Spargainium to Typha. Once the underlying driver in fish community composition was determined to be plant zonation, data were stratified by vegetation type and an IBI was developed for coastal wetlands of the entire Great Lakes basin.  相似文献   

13.
Movement of invertebrates among large rivers, tributaries, and floodplain lakes or dispersal of adult aquatic insects from riverine or floodplain habitats may provide important subsidies to food webs in receiving habitats. Intensive sampling at habitat interfaces and artificial labelling are two approaches to assess freshwater invertebrate dispersal, but these are difficult to implement at a landscape scale. Natural chemical tracers have been used to track dispersal of fishes and marine invertebrates, but the potential applicability of stable isotope ratios as natural tracers of invertebrate dispersal in freshwater environments has not been assessed. We evaluated stable hydrogen and oxygen isotopes (δD and δ18O) as natural markers of source environment and dispersal of macroinvertebrates in the middle Mississippi River, tributaries and floodplain wetlands. Water and invertebrates were collected from 12 sites during 2007–2008. Water δD and δ18O differed among the river, its tributaries, and floodplain wetlands and were strongly correlated with invertebrate δD and δ18O. Variability in invertebrate δ18O rendered it ineffective as an indicator of invertebrate source environment. Mean δD of Mississippi River invertebrates differed from δD of invertebrates from floodplain wetlands; δD distinguished invertebrates from these two environments with >80% accuracy. Neither δD nor δ18O of aquatic insects changed following emergence from their natal site. Preservation method (ethanol or freezing) did not affect invertebrate δD or δ18O. Invertebrate δD may be a useful natural tracer of natal environment and dispersal in the Mississippi River‐floodplain ecosystem and other freshwater systems where spatial variation in water δD is present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A multi-disciplinary, multi-institutional research team evaluated a broad range of physical and biological characteristics at six Great Lakes nearshore sites in order to develop and test a conceptual modeling framework to assess linkages between bluff erosion, sediment supply, coastal processes, and biological utilization of nearshore and coastal habitats. The sites were chosen to represent a broad range of hydrogeomorphic conditions, with the objective of assessing the response of these nearshore systems to anthropogenic modifications and coastal change. As a result of this 2-year field effort, new methods and integrated approaches were developed to characterize, map, and assess the dynamic nature of the nearshore zone (area generally less than 10 m water depth). Thus, these data provide an initial quantitative assessment of nearshore change. In addition, our data indicate that shoreline modifications have led to cumulative impacts that have irreversibly modified Great Lakes nearshore coastal habitats and the processes that create and maintain them. Of special note is our observation that altered nearshore substrate dynamics resulting from shoreline modifications may enhance the colonization success of lithophilic aquatic invasive species in nearshore areas of the Great Lakes. Continued development of the shoreline may exacerbate changes in Great Lakes nearshore food-web structures and ecosystem services. Further study and monitoring of these phenomena are needed, and our work suggests that a holistic, multidisciplinary approach is necessary to develop effective management strategies to address these and other issues affecting nearshore areas of the Great Lakes.  相似文献   

15.
掌握湿地分布及动态变化特征能够为更好地保护湿地提供科学依据。以江苏省滨海湿地为研究对象,对研究区1992年、2002年、2012年3个时期的遥感数据进行处理,利用最大似然法分类提取湿地信息,研究滨海地区的湿地信息、动态变化并对驱动因子进行分析。结果表明江苏滨海湿地总面积呈减少趋势,其中人工湿地所占比重增加了22.43%,自然湿地所占比重则相应减少,此外自然湿地呈现以獐茅、盐蒿群落大幅度减少以及米草先大范围扩散后相对稳定的趋势;在转移过程中,转入面积最高的是人工养殖塘,而转出率由光滩变成了浅海水域;滨海湿地变化驱动因素主要是人类活动影响。  相似文献   

16.
Many natural coastal habitats around the world are being replaced by hard coastal defense structures as a result of rising sea levels and increasing intensity of storms. To examine the potential effects of riprap on gobies in the nearshore zone of the southern Caspian Sea, we used angling to compare their abundance and diversity in 13 riprap and natural habitats (sandy and gravel shores) from April 2012 through April 2013. In total, 819 gobies of three species, Caspian sand goby Neogobius pallasi (N?=?433), round goby Neogobius melanostomus (N?=?206), and Caspian goby Neogobius caspius (N?=?180) were collected. No round gobies were caught from sandy shores and only two Caspian gobies were caught from gravel habitats, while all three species were abundant in riprap shores. A significant difference was observed in CPUE of all three goby species among shore types, with riprap sites having the highest abundance. PERMANOVA and nMDS demonstrated differences in goby assemblages among all three habitats. There were significant differences in round goby and Caspian goby sizes among riprap and natural habitats, while there were no significant differences in Caspian sand goby size among habitat types. In general deployment of riprap, especially in an area characterized as having natural shores with low structural complexity, could enhance the abundance and coexistence of nearshore gobies and act as a dispersal vector.  相似文献   

17.
Fragmentation and edge creation is common in many freshwater coastal wetlands, though relatively little is known about edge effects on abiotic conditions and faunal communities within these habitats. We investigated edge effects associated with anthropogenic fragmentation in 16 fringing coastal marshes of Lake Michigan and Lake Huron. Environmental data, zooplankton, macroinvertebrates, and larval fish were collected along transects extending into each marsh from reference (i.e., where the wetland naturally interfaced with open water) and anthropogenic edges (i.e., where the wetland interfaced with open water habitats created by vegetation removal). Physical and chemical gradients were apparent from marsh edges toward marsh interiors regardless of edge type. Faunal communities appeared to respond to these gradients. Zooplankton biomass, macroinvertebrate richness and macroinvertebrate Shannon diversity were depressed at edges and increased toward marsh interiors. Larval fish catch per unit effort, taxon richness, and Shannon diversity increased from reference edges toward marsh interiors. Larvae of individual fish species displayed varying patterns across edges. Our results suggest that because of edge effects, fragmentation of coastal marshes causes impacts that exceed the area of marsh habitat that is actually lost. For example, as a marsh's protected inner core area is reduced, the marsh fragment may cease to function as a viable refuge from hydrologic energy and open water predators. Therefore, fragmentation should be viewed as a significant impact to freshwater coastal marsh ecosystems similar to how it is regarded in terrestrial ecosystem management.  相似文献   

18.
Loss and degradation of terrestrial and aquatic habitats and degraded water quality are major environmental concerns worldwide. Especially wetlands are sensitive ecosystems that are subject to stress from human activities. Remote sensing techniques have been primarily used to generate information on land cover/use changes. Geographical Information Systems (GIS) and remote sensing can be used to provide a rapid or a large-scale understanding of lake change and in developing lake management strategies. The principal objectives of this study are to monitor and assess the spatial and temporal changes in land cover/use by using GIS, and to determine the main environmental factors affecting these changes. This paper presents a case study for the application of integrated remote sensing and GIS data for the classification and monitoring of the spatial and temporal changes in land use types. The study was conducted in a small natural wetland of Lake Cheimaditida, located in the East Mediterranean region of Northern Greece. Data analysis was conducted using GIS software. During the past several decades Lake Cheimaditida wetland has been influenced by many anthropogenic activities. The variables chosen for the assessment included condition of wetland and lake areas, present extent of wetlands relative to historic area, cover of natural habitat, wetland disturbances, etc. These variables address catchments properties that are important for maintaining and improving wetland habitats and water quality and assessment of trends useful for environmental monitoring. Land cover/land use patterns were assessed and compared using aerial photographs taken in 1945, 1969, 1982, and 1996. Over this period, reed beds enormously increased by 1,655.19%, while open-water areas and peat lands decreased by 74.05 and 99.5%, respectively. The significance of the changes in land cover distribution within the Lake Cheimaditida wetland are discussed in relation to the historical pattern of reed beds colonization, the importance of Phragmites australis in the process and the implications for strategic management of freshwater wetland resources.  相似文献   

19.
The coordinated use of ecological data is critical to the proper management of invasive species in the coastal wetlands of the Laurentian Great Lakes. Researchers and government programs have been increasingly calling for the use of data in management activities to increase the likelihood of success and add transparency in decision making. Web-enabled databases have the potential to provide managers working in Great Lakes coastal wetlands with relevant data to support management decisions. To assess the potential value of these databases to managers in Laurentian Great Lakes states, we surveyed wetland managers to determine their current data usage as well as their future data interests and catalogued the online databases currently available. Surveys were disseminated via email to managers in 56 different organizations overseeing invasive species management efforts in Great Lakes coastal wetlands; 46 responses were included in this analysis. Of the survey respondents, all reported using raw biotic data for decision making, (i.e. presence of target species) but many indicated that they would prefer to incorporate a greater variety of data, as well as more complex information. Our survey found that managers used web-enabled databases, but most databases that we catalogued only provided presence data for wetland biota. We concluded that databases can provide the types of data sought by invasive species managers but have unmet potential to be integrated into responsive management processes.  相似文献   

20.
It has been suggested that some Great Lakes coastal wetlands may be resistant to invasion by several non-indigenous species including round goby, Neogobius melanostomus. However, there is inconclusive evidence regarding how susceptible exposed fringing coastal wetlands, in particular, are to round goby invasion. Therefore, we quantified round goby catch per unit effort (CPUE) using fyke nets in the Beaver Archipelago of Lake Michigan, and the Les Cheneaux islands and Saginaw Bay regions of Lake Huron. In addition, we examined the influence of body size and maturity on round goby habitat use. Catch per unit effort from fyke nets was highest in the Beaver Archipelago, where wetlands were dominated by small, immature round gobies and open water habitats were dominated by large adults. Fyke net catches within Les Cheneaux sites were similar between habitats and differences in size and maturity were not observed. Conversely, very few round goby were captured in wetlands of Saginaw Bay where CPUE was moderate in open water. This indicates that some exposed fringing wetlands in the Great Lakes, specifically those with high productivity, could have a higher degree of resistance to round goby invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号