首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Multi-reservoir operation planning is a complex task involving many variables, objectives, and decisions. This paper applies a hybrid method using genetic algorithm (GA) and linear programming (LP) developed by the authors to determine operational decisions for a reservoir system over the optimization period. This method identifies part of the decision variables called cost reduction factors (CRFs) by GA and operational variables by LP. CRFs are introduced into the formulation to discourage reservoir depletion in the initial stages of the planning period. These factors are useful parameters that can be employed to determine operational decisions such as optimal releases and imports, in response to future inflow predictions. A part of the Roadford Water Supply System, UK, is used to demonstrate the performance of the GA-LP method in comparison to the RELAX algorithm. The proposed approach obtains comparable results ensuring non zero final storages in the larger reservoirs of the Roadford Hydrosystem. It shows potential for generating operating policy in the form of hegging rules without a priori imposition of their form.  相似文献   

2.

This paper focuses on the capacity uncertainty in water supply chains that occurs when facilities face disruption. A combination of scenario-based two-stage stochastic programming with the min-max robust optimization approach is proposed to optimize the water supply chain network design problem. In the first stage, the decisions are made on locations and capacities of reservoirs and water-treatment plants while recourse decisions including amount of water extraction, amount of water refinement, and consequently amount of water held in reservoirs are made at the second stage. The proposed robust two-stage stochastic programming model can help decision makers consider the impacts of uncertainties and analyze trade-offs between system cost and stability. The literature reveals that most exact methods are not able to tackle the computational complexity of mixed integer non-linear two-stage stochastic problems at large scale. Another contribution of this study is to propose two metaheuristics - a particle swarm optimization (PSO) and a bat algorithm (BA) - to solve the proposed model in large-scale networks efficiently in a reasonable time. The developed model is applied to several hypothetical cases of water resources management systems to evaluate the effectiveness of the model formulation and solution algorithms. Sensitivity analyses are also carried out to analyze the behavior of the model and the robustness approach under parameters variations.

  相似文献   

3.
The stochastic dynamic programming (SDP) method faces computational difficulties when used to determine the optimal operation of multiple storages. A new approach, a combined SDP-statistical disaggregation approach is introduced to determine releases for a special situation relating to multiple reservoir systems, that is, for a system of multiple storages where operational data are available. The approach consists of defining an equivalent single reservoir which represents the system of multiple reservoirs. The optimal releases from the equivalent single reservoir are derived by the use of SDP. Disaggregation of the optimal releases from the equivalent single reservoir, to produce the releases from the individual storages is based on historical operational data. The Melbourne (Australia) water supply system is considered as the example. The releases derived from the combined SDP-statistical disaggregation approach are tested by operating a simulation model, and the conclusion is made that the approach produces satisfactory releases for a system of multiple reservoirs where operational data are available. The method cannot be applied to existing systems where insufficient or no operational data are available, or to proposed systems where operational data are not available. The method uses a small amount of computer time.  相似文献   

4.
A new approach for optimization of long-term operation of large-scale reservoirs is presented, incorporating Incremental Dynamic Programming (IDP) and Genetic algorithm (GA) . The immense storage capacity of the large scale reservoirs enlarges feasible region of the operational decision variables, which leads to invalidation of traditional random heuristic optimization algorithms. Besides, long term raised problem dimension, which has a negative impact on reservoir operational optimization because of its non-linearity and non-convexity. The hybrid IDP-GA approach proposed exploits the validity of IDP for high dimensional problem with large feasible domain by narrowing the search space with iterations, and also takes the advantage of the efficiency of GA in solving highly non-linear, non-convex problems. IDP is firstly used to narrow down the search space with discrete d variables. Within the sub search space provided by IDP, GA searches the optimal operation scheme with continuous variables to improve the optimization precision. This hybrid IDP-GA approach was applied to daily optimization of the Three Gorges Project-Gezhouba cascaded hydropower system for annual evaluation from the year of 2004 to 2008. Contrast test shows hybrid IDP-GA approach outperforms both the univocal IDP and the classical GA. Another sub search space determined by actual operational data is also compared, and the hybrid IDP-GA approach saves about 10 times of computing resources to obtain similar increments. It is shown that the hybrid IDP GA approach would be a promising approach to dealing with long-term optimization problems of large-scale reservoirs.  相似文献   

5.
Real-Time Operation of Reservoir System by Genetic Programming   总被引:5,自引:5,他引:0  
Reservoir operation policy depends on specific values of deterministic variables and predictable actions as well as stochastic variables, in which small differences affect water release and reservoir operation efficiency. Operational rule curves of reservoir are policies which relate water release to the deterministic and stochastic variables such as storage volume and inflow. To operate a reservoir system in real time, a prediction model may be coupled with rule curves to estimate inflow as a stochastic variable. Inappropriate selection of this prediction model increases calculations and impacts the reservoir operation efficiency. Thus, extraction of an operational policy simultaneously with inflow prediction helps the operator to make an appropriate decision to calculate how much water to release from the reservoir without employing a prediction model. This paper addresses the use of genetic programming (GP) to develop a reservoir operation policy simultaneously with inflow prediction. To determine a water release policy, two operational rule curves are considered in each period by using (1) inflow and storage volume at the beginning of each period and (2) inflow of the 1st, 2nd, 12th previous periods and storage volume at the beginning of each period. The obtained objective functions of those rules have only 4.86 and 0.44?% difference in the training and testing data sets. These results indicate that the proposed rule based on deterministic variables is effective in determining optimal rule curves simultaneously with inflow prediction for reservoirs.  相似文献   

6.
The conjunctive use of surface and subsurface water is one of the most effective ways to increase water supply reliability with minimal cost and environmental impact. This study presents a novel stepwise optimization model for optimizing the conjunctive use of surface and subsurface water resource management. At each time step, the proposed model decomposes the nonlinear conjunctive use problem into a linear surface water allocation sub-problem and a nonlinear groundwater simulation sub-problem. Instead of using a nonlinear algorithm to solve the entire problem, this decomposition approach integrates a linear algorithm with greater computational efficiency. Specifically, this study proposes a hybrid approach consisting of Genetic Algorithm (GA), Artificial Neural Network (ANN), and Linear Programming (LP) to solve the decomposed two-level problem. The top level uses GA to determine the optimal pumping rates and link the lower level sub-problem, while LP determines the optimal surface water allocation, and ANN performs the groundwater simulation. Because the optimization computation requires many groundwater simulations, the ANN instead of traditional numerical simulation greatly reduces the computational burden. The high computing performance of both LP and ANN significantly increase the computational efficiency of entire model. This study examines four case studies to determine the supply efficiencies under different operation models. Unlike the high interaction between climate conditions and surface water resource, groundwater resources are more stable than the surface water resources for water supply. First, results indicate that adding an groundwater system whose supply productivity is just 8.67 % of the entire water requirement with a surface water supply first (SWSF) policy can significantly decrease the shortage index (SI) from 2.93 to 1.54. Second, the proposed model provides a more efficient conjunctive use policy than the SWSF policy, achieving further decrease from 1.54 to 1.13 or 0.79, depending on the groundwater rule curves. Finally, because of the usage of the hybrid framework, GA, LP, and ANN, the computational efficiency of proposed model is higher than other models with a purebred architecture or traditional groundwater numerical simulations. Therefore, the proposed model can be used to solve complicated large field problems. The proposed model is a valuable tool for conjunctive use operation planning.  相似文献   

7.

Combined simulation–optimization (CSO) schemes are common in the literature to solve different groundwater management problems, and CSO is particularly well-established in the coastal aquifer management literature. However, with a few exceptions, nearly all previous studies have employed the CSO approach to derive static groundwater management plans that remain unchanged during the entire management period, consequently overlooking the possible positive impacts of dynamic strategies. Dynamic strategies involve division of the planning time interval into several subintervals or periods, and adoption of revised decisions during each period based on the most recent knowledge of the groundwater system and its associated uncertainties. Problem structuring and computational challenges seem to be the main factors preventing the widespread implementation of dynamic strategies in groundwater applications. The objective of this study is to address these challenges by introducing a novel probabilistic Multiperiod CSO approach for dynamic groundwater management. This includes reformulation of the groundwater management problem so that it can be adapted to the multiperiod CSO approach, and subsequent employment of polynomial chaos expansion-based stochastic dynamic programming to obtain optimal dynamic strategies. The proposed approach is employed to provide sustainable solutions for a coastal aquifer storage and recovery facility in Oman, considering the effect of natural recharge uncertainty. It is revealed that the proposed dynamic approach results in an improved performance by taking advantage of system variations, allowing for increased groundwater abstraction, injection and hence monetary benefit compared to the commonly used static optimization approach.

  相似文献   

8.
Reservoirs are built to provide a powerful tool to control and manage surface water resources in order to cover inconsistency between water resources and demands. Due to finite available water and the increasing demands for water especially in arid and semi-arid regions like Iran, reservoirs must be optimally operated in order to use water in the most efficient way. This study applies the Interior Search Algorithm (ISA) to solve large scale reservoirs system operation optimization problems. The ISA is a meta-heuristic algorithm inspired from a systematic methodology of architecture process and mirror work utilized by Persian designers for decoration. Unlike other meta-heuristic algorithms, the ISA just have one parameter to tune which is a great advantage. In this study the parameter of the ISA tuned automatically using a linear equation. A real-world one-reservoir operation problem (i.e. Karun-4) and two large scale benchmark problems (i.e. four-reservoir and ten-reservoir operation problem) were employed to show the effectiveness of the ISA. The results shows the high ability of the ISA to solve reservoirs system operation problems as it achieved solutions 99.97, 99.99 and 99.95 % of global optimum for Karun-4 reservoir, four-reservoir and ten-reservoir system operation problems, respectively. These results are the best results reported so far in the studied problems. Comparing results of the ISA with those of non-linear programming (NLP), linear programming (LP), genetic algorithm (GA) and other meta-heuristic algorithms indicates fast convergence to global optimum. Considering the results, it can be stated that the ISA is a powerful tool to optimize complex large scale reservoir system operation problems.  相似文献   

9.
A two-phase stochastic dynamic programming model is developed for optimal operation of irrigation reservoirs under a multicrop environment. Under a multicrop environment, the crops compete for the available water whenever the water available is less than the irrigation demands. The performance of the reservoir depends on how the deficit is allocated among the competing crops. The proposed model integrates reservoir release decisions with water allocation decisions. The water requirements of crops vary from period to period and are determined from the soil moisture balance equation taking into consideration the contribution of soil moisture and rainfall for the water requirements of the crops. The model is demonstrated over an existing reservoir and the performance of the reservoir under the operating policy derived using the model is evaluated through simulation.  相似文献   

10.
The problems involved in the optimal design of water distribution networks belong to a class of large combinatorial optimization problems. Various heuristic and deterministic algorithms have been developed in the past two decades for solving optimization problems and applied to the design of water distribution systems. Nevertheless, there is still some uncertainty about finding a generally trustworthy method that can consistently find solutions which are really close to the global optimum of this problem. The paper proposes a combined genetic algorithm (GA) and linear programming (LP) method, named GALP for solving water distribution system design problems. It was investigated that the proposed method provides results that are more stable in terms of closeness to a global minimum. The main idea is that linear programming is more dependable than heuristic methods in finding the global optimum, but because it is suitable only for solving branched networks, the GA method is used in the proposed algorithm for decomposing a complex looped network into a group of branched networks. Linear programming is then applied for optimizing every branch network produced by GA from the original looped network. The proposed method was tested on three benchmark least-cost design problems and compared with other methods; the results suggest that the GALP consistently provides better solutions. The method is intended for use in the design and rehabilitation of drinking water systems and pressurized irrigation systems as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号