首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present an approach that uses satellite products to derive models for predicting lake chlorophyll from environmental variables, and for investigating impacts of changing environmental flows. Lake Turkana, Kenya, is the world's largest desert lake, and environmental flows from the Omo River have been modified since 2015 by the Gibe III dam in Ethiopia. Using satellite remote sensing, we have evaluated the influence of these altered hydrological patterns on large‐scale lake phytoplankton concentrations for the first time. Prior to dam completion, strong seasonal cycles and large spatial gradients in chlorophyll have been observed, related to natural fluctuations in the Omo River's seasonal discharge. During this period, mean lake chlorophyll showed a strong relationship with both river inflows and lake levels. Empirical models were derived which considered multiple hydro‐climatic drivers, but the best model for predicting chlorophyll‐a was a simple model based on Omo River discharge. Application of this model to data for 2015–2016 estimated that during the filling of Gibe III annual mean Lake Turkana chlorophyll declined by 30%. Future water management scenarios based on Gibe III operations predict reduced seasonal chlorophyll‐a variability, while irrigation scenarios showed marked declines in chlorophyll‐a depending on the level of abstraction. These changes demonstrate how infrastructure developments such as dams can significantly alter lake primary production. Our remote sensing approach is easy to adapt to other lakes to understand how their phytoplankton dynamics may be affected by water management scenarios.  相似文献   

2.
The water level variations of the Lake Balkhash, the Kapshagay Reservoir and the Ili River and the linkage with salinity and biological conditions are investigated in this work using different techniques: satellite radar altimetry, in situ gauges, historical archives of fish population counting and field works. We show that it is possible now to monitor, over decades, in near real time, with high precision, the water level changes in the Lake Balkhash from satellite altimetry, over the reservoir and also along the Ili River. The vulnerability of the lake fauna and flora populations is enhanced by the morphometry of the lake: shallow and separation of the eastern basin from the western basin through the narrow Uzun‐Aral strait. Water policy of the Ili River also plays a fundamental role in the evolution of the Balkhash Lake. The Ili River that provides 80% of the surface water of the lake is a transboundary river. Development of intense irrigated agriculture in the upstream part of this river, located in the Chinese territory, could lead in the future to high hydrological stress in the downstream regions with potentially high damage in the delta and for fishery production. We show here the recent evolution of the Lake Balkhash basin from satellite data. Some interannual oscillation of 6–8 years over the last decade has been highlighted, with a water level of the lake still at a high value, but prediction on increasing irrigation is also highlighting the vulnerability of this lake. Linkage between water level change along the river and the downstream waters is also investigated. It shows that the role of the reservoir is not fundamental in the understanding of the Lake Balkhash water level changes which is in contrast highly correlated to upstream river level changes.  相似文献   

3.
We assessed the effectiveness of multiple hydrologic restoration scenarios for Lake Urmia, as well as the variation of its salinity regime under no intervention, using a 2D shallow water model. Tested scenarios, proposed by Urmia Lake Restoration Program Committee, include: Preservation of current lake status (no intervention), complete closing of Shahid Kalantari causeway, dyke construction in the southern part of Lake Urmia, water transfer from Zarrinehrood River to Siminehrood River and reduction of agricultural water consumption by best agricultural practices. Results indicate that neither the closure of the causeway nor the construction of the southern dyke would significantly improve lake conditions when compared to preservation of current lake status. The water transfer alternative doesn’t seem to have any effect on the current lake conditions either. However, the reduction on water diversions by improving agricultural practices in the lake's basin leads to a partial restoration of the lake in terms of water level, surface area and volume. If current conditions persist, salinity in the northern part of Lake Urmia will reach supersaturation levels (340?g/L), generating further salt deposits.  相似文献   

4.
River–lake water exchange reflects hydrological connectivity and the dynamic relationship between the river and the lake. The water exchange is crucial for lake level variation, downstream river discharge and the ecosystem. To figure out the water exchange between the Yangtze River and Poyang Lake, a data‐driven model was established based on the support vector regression and genetic algorithm technique. Nine scenarios were set with different river–lake hydrological conditions, divided into two categories: single‐element change scenarios, where only the river conditions or only the lake conditions changed, and combined scenarios, where both elements changed simultaneously. The model could accurately simulate the river–lake water exchange variations. Scenario simulation results show that increasing the river flow or lowering the lake level could cause a decrease in the lake outflow. Conversely, decreasing river flow or raising the lake level could cause an increase in lake outflow. Changing lake conditions have a stronger impact on the water exchange variation than changing river conditions if the change percentages of the situation indicator values are the same. Similarly, lake level increase has a stronger impact on the water exchange variation than lake level decrease. The combined scenarios indicate the additive effect of the corresponding single‐element change scenarios, with a clear linear relationship between their lake outflow changes. This study provides an efficient model for simulating complex hydrological flow relationships in river–lake systems, and supports the management of the Yangtze River and Poyang Lake by providing the characteristics and causes of the river–lake water exchange.  相似文献   

5.
A complete annual cycle of the dynamics of fine-grained sediment supplied by the Omo and smaller rivers is simulated for Lake Turkana, one of the world’s large lakes, with the hydrodynamic, wave and sediment transport model Delft3D. The model is forced with river liquid and solid discharge and wind data in order to simulate cohesive sediment transport and resuspension. It simulates stratification due to salinity, wave generation and dissipation, and sediment advection and resuspension by waves and currents, with multiple cohesive sediment fractions. A comparison of the simulation results with remotely-sensed imagery and with available in-situ sediment deposition rates validates the model. By devising simulation scenarios in which certain processes were switched on or off, we investigated the contribution of waves, wind-induced surface and bottom currents, salinity-induced stratification and river jet, in resuspending and transporting fine sediments in the lake basin. With only the wind or river influence, most of the sediment deposition occurs in the first 10 km off the Omo River mouth and at a depth < 10 m. When waves are switched on, increased bed shear stresses resuspend most of the fine sediments, that are then deposited further and deeper in the first 30 km, in water depths > 30 m. This study sheds new light on sediment transport in Lake Turkana and in great lakes in general, favouring the view that wind-waves can be the main agent that transports sediment away from river mouths and to deeper areas, as opposed to river-plume or gravity-driven transport.  相似文献   

6.
Lake Pamvotis, NW Greece is a shallow Mediterranean eutrophic lake that has changed drastically over the past 50 years. Strong effects, resulted mainly from anthropogenic causes, in the hydrological regime are shown for this area using long term hydrological data and a GIS system for extracting land cover/use changes. A set of aerial imagery acquired in 1945 through 2002 were used to monitor and assess the spatial and temporal changes in land cover/use, focused mainly on the lake’s surface area and its surrounding ecosystem (Natura 2000 area). The significance of the changes in land cover/use distribution within Pamvotis wetland is further discussed depicting the role of the anthropogenic influence on the fragile ecosystem that resulted in the shrinkage of lake’s habitats extent. The purpose of this analysis was to examine the long-term changes on macrophyte community composition, species occurrence and relative abundance with water quality and water level changes over the past century, using historical data, aerial photos and GIS techniques. The results showed that for the last 25 years annual water level fluctuation ranged from 70 to 159 cm. Water level starts decreasing in mid June and increasing again gradually from November until March–April. Intra annual water level fluctuation seems to be affected by land use for agricultural purpose through intensive irrigation and the summer drought as well. A dramatic decline of the submerged vegetation is apparent mainly attributed to anthropogenic pressures. Regarding the land cover/use changes, the most notable and significant alterations are concerning the urban development around the lake, the disappearance of wet meadows and the extension of reed beds. Finally it seems that water budget data as well as the response of the key eutrophication parameters are affected from both hydrological alterations and point/non-point pollution sources.  相似文献   

7.
The impoundment of the Three Gorges Dam (TGD) has disturbed the hydrological regime downstream and has directly affected the relationship between the Yangtze River and Dongting Lake. To trace the realistic and potential impacts, this paper examined the changes of the channel morphology and sedimentology caused by the TGD through a field survey on the channel cross-sections and then analyzed the impact on lake water level through BP neural networks. The possible impacts on inundation patterns in lake wetlands were studied based on the lake basin DEM. The results indicate that drastic sediment decline and severe channel erosion are putting considerable pressure on the river and lake. Changing river channels are evident in some monitoring cross-sections. Dongting Lake, for the first time, changed from trapping to supplying net sediment to the Yangtze River. During the water storage periods of the TGD, the water level decreased 2.03?m in 2006 and 2.11?m in 2009 at the outlet of the lake, with extreme decreases up to 3.30?m and 3.02?m, respectively. These changes have inevitably induced alterations in the inundation patterns of the lake wetlands, which in turn have disturbed the ecological function of lake wetlands as habitats for both migratory birds and aquatic fish. The serious droughts in Dongting Lake recent years were largely connected with the above changes. Therefore, proper attention should be paid to this occurrence.  相似文献   

8.
为揭示鄱阳湖和洞庭湖水文特征并综合分析其影响因素对湖泊水资源管理及江湖关系, 以两湖水系统为研究对象, 采用非参数秩次相关检验法( Mann2Kendall M2K) 分析方法和近 30 年两湖2流域2长江水位和流量长序列数据集, 解析湖泊水文变化特征、趋势和程度, 并通过两湖水文的对比来系统分析长江中游大型通江湖泊水文变化规律及其影响因素, 旨在对两湖流域水资源的整体认识和把控, 丰富对江-河-湖复杂水系统作用机制与内涵的深入理解。结果表明: 两湖水位在近 30 年总体上呈“上升-非稳定状态-下降” 3 个变化阶段。2003 年前, 鄱阳湖和洞庭湖水位总体呈上升趋势, 且在 1980- 2000 年间基本处于不稳定的波动状态, 2003 年后两湖水位呈明显的下降趋势。 Mann-Kendall 分析得出: 两湖水位可能在 2005 年左右发生明显突变, 且鄱阳湖和洞庭湖水位与之前相比, 最大降 幅分别可达 9. 4% 和 3. 4% , 表明两湖水位变化的趋势程度存在差异, 鄱阳湖水情变化的敏感程度要强于洞庭湖。 对长江干流的补水期洞庭湖为 4- 10 月, 鄱阳湖为 3- 8 月, 表明两湖对长江干流水文的不同调节补偿作用。  相似文献   

9.
Recent trends (1965 through 1978) of total phosphorus were analyzed with a time-variable, nutrient budget model of Lake Ontario. Future conditions were also simulated to estimate the effect of anticipated control measures on the lake's water quality.The analysis suggests that recent improvements in Lake Ontario's total phosphorus concentration are attributable to point source reductions due to detergent limitations and waste treatment by the Province of Ontario and the State of New York. Projections show that present point source controls will maintain the lake at the upper level of mesotrophy (15-20 μgP/L) to the year 2000, whereas the absence of controls would result in eutrophy (~30 μgP/L). Further indications are that some diffuse source reduction may be required if oligotrophy (<10 μgP/L) is the ultimate goal and that Lake Ontario's fate is closely related to that of Lake Erie.An attempt is made to assess the effect of model uncertainty and phosphorus availability on the projections. In general, the inclusion of uncertainty indicates that more stringent load reductions will be needed to meet water quality objectives with greater than 50% certainty. Inclusion of availability tends to improve prospects for lake restoration and to enhance point as opposed to diffuse source controls.  相似文献   

10.
长江与鄱阳湖水文关系及其演变的定量分析   总被引:2,自引:0,他引:2  
胡振鹏  傅静 《水利学报》2018,49(5):570-579
鄱阳湖蓄水受到自身流域来水和长江流量的双重影响,利用长江汉口和鄱阳湖星子水文监测资料,统计分析后得到长江与鄱阳湖量化的水文关系:(1)如果汉口流量小于15 000 m~3/s,长江对鄱阳湖出流影响不明显,鄱阳湖基本上自由出流,湖水位变幅较大。(2)如果汉口流量超过18 000 m~3/s,长江对鄱阳湖出流顶托作用明显,汉口流量越大,顶托越显著,因顶托而滞蓄在湖盆的水量可达31.9%~81.4%。(3)如果星子水位10.5~16.5 m且汉口流量大于20 000 m~3/s,出现长江向鄱阳湖倒灌的可能性较大;星子水位低于8 m或鄱阳湖主汛期一般不会发生倒灌。2000年以后鄱阳湖与长江水文关系发生了一些变化,主要表现在长江对鄱阳湖出流顶托作用弱化,鄱阳湖枯水期提前并延长,湖水位日涨落幅度增大。定量研究这些关系,对于鄱阳湖水资源利用、水环境和水生态保护具有重要作用。  相似文献   

11.
利用环太湖水文巡测资料和湖西区、澄锡虞区主要入湖口门水质资料,对2000年前后的太湖水环境进行对比分析。结果表明,2000年以来太湖湖西区和澄锡虞区由于受引长江水的影响,入湖水量大增,导致河网污染物大量入湖,使输入太湖的污染物量远远超过其本身的纳污(自净)能力,太湖富营养化有加剧的趋势。建议严格强化陆域控源减排,优化"引江济太"调度方案,适度控制引长江水量,以减少竺山湖、梅梁湖、太湖西部沿岸区乃至整个太湖的污染物入湖量。  相似文献   

12.
During an initial field survey in 2012, we observed an unexpected asymmetry of dissolved oxygen distribution between the western and eastern side in northern Lake Iseo. Motivated by this apparent anomaly, we conducted a detailed field investigation, and we used a physical model of the northern part of the lake to understand the influences that might affect the distribution of material in the northern section of the lake. These investigations suggested that the Earth's rotation has significant influence on the inflow of the lake's two main tributaries. In order to further crosscheck the validity of these results, we conducted a careful analysis at a synoptic scale using images acquired during thermally unstratified periods by Landsat-8 and Sentinel-2 satellites. We retrieved and post-processed a large set of images, providing conclusive evidence of the role exerted by the Earth's rotation on pollutant transport in Lake Iseo and of the greater environmental vulnerability of the north-west shore of this lake, where important settlements are located. Our study confirms the necessity for three-dimensional hydrodynamic models including Coriolis effect in order to effectively predict local impacts of inflows on nearshore water quality of medium-sized elongated lakes of similar scale to Lake Iseo.  相似文献   

13.
Robert G. Varady 《国际水》2013,38(3):334-336
Abstract

Lake Verbano, located in Northern Italy on the Swiss-Italian border, is a natural lake used as multipurpose reservoir. Its management aims at the satisfaction of downstream water supply for hydropower generation and irrigation, and at the control of floods, both on the lake shores and on the outflowing river. Since these objectives are conflicting, this paper explores a methodology aimed at solving the conflict, both by a structural modification of the lake outlet and by a modification of the control scheme.  相似文献   

14.
Urmia Lake in Iran is the second largest saline lake in the world. This ecosystem is the home for different species. Due to various socio-economical and ecological criteria, Urmia Lake has important role in the Northwestern part of the country but it has faced many problems in recent years. Because of droughts, overuse of surface water resources and dam constructions, water level has decreased in such a way that one quarter of the lake has changed to saline area in the last 10 years. The purpose of this research is to determine the main factors which reduce the lake’s water level. To this end, a simulation model, based on system dynamics method, is developed for the Urmia Lake basin to estimate the lake’s level. After successful verification of the model, results show that (among the proposed factors) changes in inflows due to the climate change and overuse of surface water resources is the main factor for 65% of the effect, constructing four dams is responsible for 25% of the problem, and less precipitation on lake has 10% effect on decreasing the lake’s level in the recent years. In the future, the model also can be used by managers as a decision support system to find the effects of building new dams or other infrastructures.  相似文献   

15.

Nutrient pollution causes frequent blooms of potentially harmful cyanobacteria in Lake Peipsi (Estonia/Russia). Although external nutrient loading has reduced since the 1990s, lake water quality has barely improved, and eutrophication is still considered a threat to lake biota and water usage. To understand the recovery dynamics of the lake it is necessary to analyse the effects of land use and lake management on water quality to develop mitigation strategies. Comprehensive analysis has thus far failed due to information gaps inherent to conventional monitoring strategies. We show how two large-scale hydrological models using Earth observation data provide spatial information on pollution and can help explain the causes of past and current lake eutrophication. WaterGAP3.2 provides valid estimates of present and probable future phosphorus concentration in the lake water, based on past hydrological conditions. WaterWorld models spatial potential water quality and a scenario of optimal pollution reduction. Remotely sensed optical water quality data can be used to analyse recent, spatial water quality dynamics. The spatial and temporal algae distributions and can help explain eutrophication causes at Lake Peipsi and its catchment, adding value to in situ monitoring and supporting river basin management with large scale data.

  相似文献   

16.
基于景观指数的高邮湖湿地生态水文连通性分析   总被引:1,自引:0,他引:1  
为了定量评价水位的变化和人类活动对高邮湖湿地连通性的影响,基于高邮湖湿地不同景观类型及其时空动态性,利用遥感影像数据的分类解译结果,选择连接度指数CONNECT、斑块内聚力指数COHESION、破碎化指数FN以及分离度DIVISION等指标,构建高邮湖湿地生态水文连通度综合指数CECI,分别对比分析了不同水位和相同水位不同年份下高邮湖湿地生态连通性的变化情况。结果表明:生态水文连通度综合指数CECI可以定量表征湿地生态连通性的动态变化;随着水位上升,高邮湖湿地湖泊与河流的CECI分别从2. 79、0增加到9. 21、6. 75,生态水文连通性逐渐提升;该研究区湖泊与河流的水文连通性变化具有很强的相关关系,湖泊水文连通性优于河流;在水位相同的情况下,从2013年到2017年,由于退圩还湖、退圩还湿等人类活动的影响,高邮湖湿地面积增加,湖泊的CECI从6. 27增加到7. 48,河流的CECI从2. 62增加到4. 61,生态水文连通性有所提高。  相似文献   

17.
鄱阳湖是长江中下游典型的通江湖泊,其出流特征及水位涨落同时受五河及长江来水的双重影响,进而形成较为复杂的江湖水文情势关系。为研究长江对鄱阳湖作用的变化规律,依据鄱阳湖五河以及出湖控制水文站1956—2016年水文数据,探讨长江对鄱阳湖倒灌水量的变化规律。研究结果表明:鄱阳湖五河七口控制站2003—2016年年平均径流量相比1956—2002年有所降低。鄱阳湖倒灌水量、倒灌天数均与汉口站来水和鄱阳湖入湖水量之差呈较好的正相关关系。2003年后,三峡水库的蓄水或放水在一定程度上影响了江湖作用的季节变化和鄱阳湖流域的旱涝机遇,一定程度上减少了长江对鄱阳湖的倒灌频次。通过对倒灌水量和倒灌天数的分析可知,在1960年代、1980年代和21世纪初,长江上中游来水对鄱阳湖的作用相对强烈;而在1970年代、1990年代和2010年以后,长江上中游来水对鄱阳湖作用较弱。研究成果对于认识变化条件下长江与鄱阳湖江湖关系变化规律具有重要意义。  相似文献   

18.
基于实测数据分析了荆江河段冲淤变化特征,采用数值模拟方法定量分析了三峡水库建库前后荆江河段地形变化对2008—2018年8—11月洞庭湖水文情势的影响。结果表明:荆江河道地形变化导致洞庭湖区8—11月水位下降,地形变化对洞庭湖区水位的影响程度随着与城陵矶距离增加而减弱;荆江河段和三口洪道冲刷下切削弱了长江与洞庭湖的水力联系,导致同样来水条件下荆南四河入湖和城陵矶出湖水量减少,从而间接降低了洞庭湖的调蓄能力;在枝城站来水一定的条件下,荆南四河分流量减少导致沙市—螺山河段的流量增加,同流量下螺山站中低水水位有一定的抬高。  相似文献   

19.
We chronicled the seasonally recurring hypolimnetic hypoxia in Muskegon Lake – a Great Lakes estuary over 3?years, and examined its causes and consequences. Muskegon Lake is a mesotrophic drowned river mouth that drains Michigan's 2nd largest watershed into Lake Michigan. A buoy observatory tracked ecosystem changes in the Muskegon Lake Area of Concern (AOC), gathering vital time-series data on the lake's water quality from early summer through late fall from 2011 to 2013 (www.gvsu.edu/buoy). Observatory-based measurements of dissolved oxygen (DO) tracked the gradual development, intensification and breakdown of hypoxia (mild hypoxia <4?mg DO/L, and severe hypoxia <2?mg DO/L) below the ~6?m thermocline in the lake, occurring in synchrony with changes in temperature and phytoplankton biomass in the water column during July–October. Time-series data suggest that proximal causes of the observed seasonal hypolimnetic DO dynamics are stratified summer water-column, reduced wind-driven mixing, longer summer residence time, episodic intrusions of cold DO-rich nearshore Lake Michigan water, nutrient run off from watershed, and phytoplankton blooms. Additional basin-wide water-column profiling (2011–2012) and ship-based seasonal surveys (2003–2013) confirmed that bottom water hypoxia is an annually recurring lake-wide condition. Volumetric hypolimnetic oxygen demand was high (0.07–0.15?mg DO/Liter/day) and comparable to other temperate eutrophic lakes. Over 3?years of intense monitoring, ~9–24% of Muskegon Lake's volume experienced hypoxia for ~29–85?days/year – with the potential for hypolimnetic habitat degradation and sediment phosphorus release leading to further eutrophication. Thus, time-series observatories can provide penetrating insights into the inner workings of ecosystems and their external drivers.  相似文献   

20.
为揭示洞庭湖近十几年水文连通性的变化特征并对其未来变化进行预测,研究极端气候事件在洞庭湖水文连通性变化中作出的贡献,使用水文连通性指数法、ETCCDI极端气候指数、Hurst指数以及数理统计分析方法进行研究。研究结果表明:洞庭湖水文连通性整体呈现夏季>秋季>春季>冬季的特征,夏季、秋季、春季和冬季的整体连通性指数均值分别为0.95、0.88、0.81和0.63,且洞庭湖的水文连通性在近30年比较稳定;经持续性预测发现洞庭湖水文连通性Hurst指数均大于0.5,表示其在没有人类活动干扰的情况下会在未来呈延续下降的趋势;洞庭湖水文连通性指数随着水位增加逐渐增加且增速逐渐放缓,水位增加对其具有正向影响的边际递减效应;极端降水事件对洞庭湖水文连通性具有较为明显的正向影响,而极端气温事件对洞庭湖水文连通性影响作用较小。研究结果有助于充分认识洞庭湖水资源演变规律,对保障洞庭湖流域水资源安全具有重要的理论和现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号