首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
通过系列试验量测了不同安装高度、不同水位差时虹吸管水平管段的压降、含气率及过流量,探讨和分析了虹吸管气液两相流压降的变化规律及气液两相流流型不同时影响管道压降的因素。结果表明,气液两相流管道压降与液相满流时压降规律相同,即压降值随管道水头的增大而增大;但是,与液相有压管流不同,水位差一定时压降值随安装高度的增大而减小。当虹吸管内为气泡流时,气泡存在对沿程阻力系数λ影响很小,可忽略不计。管道实测压降小于计算值的原因是气液两相压降减小率等于流速减小率。当虹吸管内为过渡流和气团流时,气液两相压降减小率与流速减小率相差较大,实测压降的减小不仅与流速减小有关,含气率的大小对气液两相压降的影响也不可忽略,含气率的增大使气液两相流动阻力增大,即压降增大。  相似文献   

2.
该文针对非驼峰式正虹吸管道进行了系列试验,量测了不同安装高度、不同水头差时管内呈现气团流流型时的过流能力和截面含气率。试验结果表明,气团流流型下虹吸管道过流能力随虹吸管安装高度的增大而减小,不能采用常规有压管流公式计算气团流流型时虹吸管过流能力。基于试验结果分析了影响气团流过流能力的因素,结果表明气体存在对流动沿程阻力系数影响不可忽略,过流能力计算时不能直接采用单一液相流动沿程阻力系数。不同安装高度时虹吸管内过流面积减小不是导致输水流量减小的唯一因素,除了考虑过流面积减小对过流量的影响外,还应考虑含气率大小引起的μ_0或λ变化对流量的影响。结合试验结果和数值分析,推导出适用于气团流流型下伪空化现象明显、安装高度不大于8 m的水平管段较长考虑含气率大小的虹吸管流量系数计算公式,修正和完善了有压管流过流能力计算公式,经检验公式计算误差小于±7%。  相似文献   

3.
该文对以叶轮起旋的水平管内气液两相螺旋流的摩擦阻力压降特性进行了实验研究,水平实验管段为内径23 mm,长度为2 m的有机玻璃管,实验工质为空气和水,气相折算速度为0 m/s–3 m/s,液相折算速度为0 m/s–1.5 m/s。主要研究了流速以及叶轮参数对压降的影响,对比分析了气液两相非旋流与气液两相螺旋流的压降特点,实验结果表明:流体流速是管内摩擦阻力特性的重要影响因素,随着气相折算速度的增大,管内压降逐渐增大。叶轮参数对压降亦有较大影响,随着起旋角度的增大或者随着叶片面积的减小,压降均有逐渐变大的趋势。与气液两相非旋流相比,气液两相螺旋流的压降进一步增大;且随着气相折算流速的增加,螺旋流的压降增大速度要高于非旋流。最后,基于Lockhart和Martinelli方法,根据实验数据建立了气液两相螺旋流压降计算模型,研究结果表明理论值与实验测量值吻合较好。  相似文献   

4.
《人民黄河》2017,(11):153-156
为研究真空有压管道安装高度及上下游水位差对管道过流能力和压降的影响,通过改变安装高度和水位差对真空有压管道进行试验,结果表明:安装高度和水位差对管道流量及压降影响很大,安装高度一定时,随着水位差增大,管道过流能力增强,压降增大,且安装高度越大,水位差的变化对管道流量的影响就越明显;水位差一定时,随着安装高度增大,管内掺气浓度增大、压降减小,过流能力减弱,而安装高度在小水位差时对管道流量影响较大。  相似文献   

5.
为了考察阴离子型表面活性剂十二烷基硫酸钠(SDS)对气液两相螺旋管流流动特性的影响,该文用实验研究了不同浓度的SDS溶液体系气液两相螺旋管流的流型转变及压降规律。实验装置为由有机玻璃圆管制成的长2 m内径23 mm的实验段,以SDS水溶液和空气为实验介质,气液相折算流速均为0―2.5 m/s,SDS溶液质量浓度10―90 mg/kg,螺旋流由5种不同型号的金属螺旋叶轮诱导产生。利用直接观察和高速摄像相结合的方法观测流型的变化,并用液柱式压差计测量实验管段上下游间压差,实验在常温常压条件下进行。实验共得到螺旋线状流、螺旋波状分层流、螺旋轴状流、螺旋弥散流4种流型,与未添加表面活性剂体系相比较,并未得到螺旋泡状流和螺旋团状流这两种流型。同时,随着SDS溶液浓度的增大,气液两相螺旋流逐渐向螺旋弥散流流型转变,这是因为低浓度的SDS溶液随着其浓度的增大,气液界面张力逐渐减小,而气液掺混程度则会不断增大。此外,与未添加表面活性剂体系相比较,添加了SDS体系的气液两相螺旋管流压降梯度将会减小。最后,阐述了气液两相螺旋管流强化天然气水合物生成的研究及应用现状,并针对多相流研究现状,提出了气液两相流相间传热特性应成为今后研究热点等建议。  相似文献   

6.
通过泄槽水力学模型试验,研究了溢洪道、泄洪洞等泄水建筑物挑流反弧段掺气浓度的沿程变化规律;分析反弧段掺气浓度分布与挑坎高度、挑流段反弧半径以及来流流量之间的关系,以期为优化掺气坎体型及掺气坎下游设施提供依据。试验结果表明,挑流反弧段水流表、中、底不同部位掺气浓度的沿程衰减率是不相同的;在试验范围内,挑流反弧段水流掺气浓度随掺气坎高和反弧半径的增大而增大,随流量的增加而减小。  相似文献   

7.
以纽带起旋的气液螺旋流实验研究   总被引:1,自引:0,他引:1  
鉴于气液两相螺旋流在实际中的重要作用,且目前国内外对其鲜有研究报道,该文以空气和水为实验介质,利用高速摄像机对以纽带为起旋装置下的水平管内气液两相螺旋流的流型进行了研究.实验研究发现,存在螺旋波状流、螺旋泡状流、螺旋轴状流和螺旋弥散流四种典型的流型,并着重讨论了纽带的扭率对流型转换边界和流动压降的影响.该实验研究为今后对气液两相螺旋流的研究奠定了基础.  相似文献   

8.
运用Fluent软件建立三维模型,对某调水工程中的一段有压管道充水过程的水力特性进行三维数值模拟计算,采用PISO算法分析了管道充水过程中气体压力、水力要素及两相流流态变化情况。结果表明:充水流量的大小会导致管内气体压力的强烈变化;气体压力变化又会影响进口流速。在水体流到管道后部管壁之前,流线均匀,流态较好;之后气液两相彼此相间,流线错综复杂,流态紊乱,湍流能量较强。建议以"小流量充水原则"对类似输水管道进行试充水操作。  相似文献   

9.
本文应用一维变密度气-液两相流动量于喷嘴和水平圆管的气水两相流动,建立了喷嘴进口压力及流速之间的关系,将动量方程在有限管道长度内积分,从而可由试验得的压力差计算通过水平圆管的气-液两相流阻力系数,并在大量试验的基础上建立了考虑截面含气率的喷嘴动量修正系数的相关关系式和水平圆管中大气两相流阻力系数与雷诺数之间的关系式。  相似文献   

10.
采用CFD方法求解气液两相流模型,对双层组合桨搅拌槽内的气液混合流动进行了数值模拟,其中上层桨是由8个不规则弧形叶片单元组成的倒伞形表面曝气转轮装置,下层桨是六直叶涡轮装置。控制方程采用速度压力耦合PISO(Pressure-Implicit with Splitting of Operators)算法求解,自由液面的捕捉采用VOF(Volume of fluid)法。根据模拟结果,分析了下层桨的安装高度对气相与液相的混合时间、搅拌槽内的流场特性以及气含率分布的影响规律:在本文模拟的3种工况下,随着下层桨安装高度的增加,混合时间减小,而气液混合区域增大,气体浓度沿轴向的变化率也增大。  相似文献   

11.
虹吸技术已被广泛应用于工程实际中,特别是在排除边坡地下水和降低泥石流水动力条件方面有极大的应用价值。边坡中深部地下水的排除需要采用高扬程虹吸管,但在实际使用中,高扬程自平衡虹吸管因易断流而造成虹吸排水失效。利用空化理论,系统分析了虹吸管内气泡产生的机理,并通过流体数值分析软件FLUENT发现自平衡虹吸管内气液两相流动是一个从泡状流向弹状流的转变过程。研究结果表明虹吸管内形成弹状气泡后,增加了虹吸流动中的压力降,导致管顶真空度降低,破坏水流连续性,造成虹吸断流,并影响虹吸的下次启动。  相似文献   

12.
农田暗管排水能力分析与提升方法探讨   总被引:2,自引:0,他引:2  
王少丽  任晓磊  陶园 《水利学报》2021,52(11):1263-1269
在地下水位较高、地表易于形成积水的地区,探索经济可行的农田暗管排水措施,对于降低作物涝渍胁迫、提高作物产量具有重要意义。本文基于暗管排水流量理论公式分析了暗管排水能力影响因素及增强暗管排水能力的途径,提出在暗管出口处安装虹吸管,利用虹吸原理使其下端出流口降低到一定深度的虹吸增流方法。理论和试验表明,该方法可以大大提升浅埋暗管排水能力,且不增加暗管排水成本。浅暗管通过虹吸管出口降低到中埋和深埋时,即作用水头增加1.33倍和1.67倍时,排水流量增大33.3%和66.7%;由于浅埋管具有较小的渗流阻抗系数,其排水流量比相同出口的中埋管和深埋管大16%和27%。随积水层深度的减小,有虹吸的浅暗管排水流量虽然减小,但增流效果百分比在增大。该研究成果可为涝渍灾害易发地区建设高效除涝降渍减灾工程提供新途径。  相似文献   

13.
为了研究壁面微结构流动控制技术的减阻效应及其产生的原因,利用循环管路系统的方形管道进行了压降测定试验,并利用粒子成像测速仪测量了边界层内部结构和对应的参数。试验采用了沟槽和肋条两种不同类型的微结构壁面,每种形状的微结构各有3种不同的结构尺寸。试验研究结果表明:在一定的无量纲宽度s+范围内,6种不同的微结构壁面都具有减阻效果;减阻率随着s+的增大,呈现先增大后减小的趋势,其中沟槽壁面2的减阻效果最好,最大减阻率为9.90%;壁面微结构通过影响流场内部的涡结构、湍流脉动、雷诺切应力和平均流速等使得不同壁面微结构具有减阻效果。  相似文献   

14.
水平井筒变质量分散泡状流压降的理论与实验研究   总被引:1,自引:1,他引:0  
由于水平井筒和常规水平管道中气液两相流动的相似和差别,可以预知常规水平管流的压降计算方法对于井筒流动来说就需要进行修正或扩展。本文对气、液两相分别应用质量守恒方程和动量守恒方程,考虑管壁存在人流或出流对于分层流流型压降的影响,得到水平井筒气液两相变质量流动分散泡状流流型的压降计算方法。同时,设计并建立了水平井筒流体流动模拟实验装置,在轴向为气液两相流动的前提下分别进行了上管壁单孔眼注入和下管壁单孔眼注入的压降实验研究,获得了大量的实验数据。实验数据和理论计算结果吻合很好,这表明该计算方法具有实际应用价值。  相似文献   

15.
Natural river floodplains and adjacent wetlands grow typically a diverse and heterogeneous combination of herbs, shrubs and trees, which play an essential role in determining the total flow resistance. Hydrodynamic effects of trees in forested floodplains can provide the majority of flow resistance during flood events. Nevertheless, ground‐based techniques to acquire vegetation parameters are expensive and difficult to apply over long reaches. This paper presents a novel method of automated roughness parameterization of riparian woody vegetation by fusion of Quickbird multi‐spectral image with airborne laser scanning (ALS) data. The data fusion approach includes: individual tree detection and estimation of vegetation metrics from light detection and ranging (LiDAR) data, assessment of predictive models for the vegetation parameters and spatial mapping of the vegetation parameters for the forest plants in the riparian corridor. The proposed method focuses on estimation of plant density (d), crown diameters (DC), tree height (h), stem diameter (DS), crown base height (cbh) and leaf area index (LAI). The procedure is tested along a 14‐km reach of the Sieve River (Tuscany, Italy) characterized by high woody plant density. Due to the complex study area, the data fusion approach explains with variable reliability the local vegetation properties (R2(DC) = 0.14, R2(h) = 0.84, R2(DS) = 0.25, R2(cbh) = 0.66). The generated structural parameter maps represent spatially explicit data layers that can be used as inputs to hydrodynamic models used to analyse flow resistance effects in different submergence conditions of vegetation. A simple flow resistance model was applied over a test area comparing the results of the proposed method and a traditional ground‐based approach. The modelling results showed that the new method is able to provide accurate output data to describe the interaction between water levels and bio‐mechanical characteristics of vegetation. The proposed methodology provides a fast, repeatable and accurate way of obtaining floodplain roughness, which enables regular updating of vegetation characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The CFD simulations are carried out for the flows in a horizontally oriented helical pipe with various inlet sectional liquid holdups and coil pitches ( H ) . The development of the pressure fields for the single phase air flow and the air-water two-phase flow through the helical rectangular channels is studied. The points with a higher pressure often become the position of expansion leakage. The liquid phase distribution at these points can prevent the leakage of air. It is shown that the increase of the inlet sectional liquid holdup may increase the local liquid holdup at the outmost side of the helical channel. Based on the published pressure drop correla-tion, a new modified relation for predicting the pressure drop in the helical rectangle channel is proposed.  相似文献   

17.
基于LS-DYNA流固耦合数值模拟方法,针对多个工程常用锤型进行数值模拟对比,分析了水下夯锤绕流阻力系数变化规律。结果表明:夯锤底面静压强一定时,夯锤质量越大,其绕流阻力系数越小;夯锤在水中下落的过程中,速度随着落距的增加而增大,但增长的幅度逐渐减小并趋于稳定;夯锤的能量利用率随着落距的增加而减小,其中夯锤底面静压强一定时,夯锤质量越小能量耗散率越大。  相似文献   

18.
Recharge to the aquifer leads to the growth of a groundwater mound. Therefore, for the proper management of an aquifer system, an accurate prediction of the spatio-temporal variation of the water table is very essential. In this paper, a problem of groundwater mound formation in response to a transient recharge from a rectangular area is investigated. An approximate analytical solution has been developed to predict the transient evolution of the water table. Application of the solution and its sensitivity to the variation of the recharge rate have been illustrated with the help of a numerical example.Notations a = Kh/e [L2/T] - A = aquifer's extent in the x-direction [L] - B = aquifer's extent in the y-direction [L] - e = effective porosity - h = variable water table height [L] - h 0= initial water table height [L] - h = weighted mean of the depth of saturation [L] - K = hydraulic conductivity [L] - m, n = integers - P = constant rate of recharge [L/T] - P 1+P0= initial rate of transient recharge [L/T] - P 1= final rate of transient recharge [L/T] - s = h 2–h 0 2 [L2] - t = time of observation [T] - x,y = space coordinates - x 2–x1= length of recharge area in x-direction [L] - y 2–y1= width of recharge area in y-direction [L] - z = decay constant [T-1]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号