首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
基于5个地面通量站点观测数据,对ET-EB、MOD16、GLEAM、Zhang-ET和GLDAS共5种地表温度蒸散发产品开展了验证工作,继而选取精度较好的产品,采用经验正交分解方法研究了西南河流源区2001—2013年地表蒸散发的时空变化特征。结果表明:5种产品中,GLEAM的精度较好,均方根误差为23.4 mm/月;西南河流源区的地表蒸散发夏季最高,冬季最低;从东南向西北,西南河流源区的地表蒸散发逐渐降低;2001—2013年,长江上游和黄河上游地表蒸散发均呈增加趋势,黄河上游上升幅度最大;整体上看,比湿与源区地表蒸散发的相关性最强,但不同流域地表蒸散发与气温、比湿和降水的相关性不同:怒江流域、澜沧江流域、长江上游和黄河上游春秋两季的地表蒸散发与比湿相关性较强,雅鲁藏布江流域、藏南诸河、青海湖水系春秋两季的地表蒸散发与气温的相关性较强;源区地表蒸散发随着高程的增加而降低,随着坡度的增加而增加,在坡向为东南和西北时,地表蒸散发较高。  相似文献   

2.
基于地表能量平衡的大尺度流域蒸散发遥感估算研究   总被引:1,自引:0,他引:1  
蒸散发是地表能量平衡的关键环节,准确估计流域蒸散发对水资源管理、作物估产、以及环境保护等具有重要意义。研究结合中国中高纬度区域气候特征、土地利用类型以及植被动态特征,改进了基于地表能量平衡系统(Surface Energy Balance System,SEBS)的蒸散发估算模型。以松花江流域为例,进行大尺度流域的多年蒸散发反演。通过多年流域水量平衡、流域内生态观测实验以及全球通量观测网络评价数据验证模型估算精度,同时借助陆面过程模型和NASA的MOD16蒸散发产品进行交叉验证,评估模型模拟精度。结果表明,改进的SEBS模型在全国范围内精度并不统一,但在松花江、辽河流域估算精度较高,因此基于地表能量平衡的蒸散发估算模型是一种估算我国中高纬度区域蒸散发的可行方法。松花江流域时空变化研究发现,流域多年蒸散发总值变化不大,但存在空间上的变异性。  相似文献   

3.
蒸散发是气候系统能量循环和水分循环的关键要素,探究黄淮海流域实际蒸散发的演变规律及其影响因素对深入理解该区域水循环对气候变化的响应具有重要意义。基于1980—2018年黄淮海流域的GLEAM蒸散发产品数据、气象数据和NDVI数据,采用线性回归法、Mann-Kendall检验及相关性分析等方法,分析了实际蒸散发的时空演变规律及其影响因素。结果表明:GLEAM产品的计算值在黄淮海流域的验证精度较好,流域内多年平均实际蒸散发量为474 mm,呈显著上升趋势。实际蒸散发的空间变化范围是183~708 mm,空间差异显著,呈现从东南向西北方向递减的趋势,季节的空间分布与年际分布特征基本一致。实际蒸散发与NDVI均呈显著正相关关系,与降水和气温以正相关关系为主。黄淮海流域降水变化不明显,气温显著升高,NDVI增加是流域内实际蒸散发量显著上升的主要原因。  相似文献   

4.
蒸散发是流域水循环和能量循环的重要环节,准确估算蒸散发对流域水循环研究具有重要意义,同时也可以为流域水资源优化配置和可持续利用提供支撑。利用汉江流域观测的逐月降水数据、径流数据以及重力卫星(GRACE)反演的流域蓄水量变化数据计算水量平衡蒸散发(ET_WB),以ET_WB为标准在月尺度上评估4类9种不同蒸散发产品(陆面模式产品ET_clm、ET_noah、ET_mos、ET_vic;再分析数据产品ET_jra;基于模型树集的通量观测产品ET_jung和基于能量平衡的诊断模型产品ET_modis、ET_PML、ET_Zhangke)在汉江流域的适用性。结果表明基于模型树集的通量观测产品和基于能量平衡的诊断模型产品精度较好,再分析产品次之,陆面模式产品(除ET_clm)较差。ET_jung、ET_modis和ET_clm在月尺度上与ET_WB有着较好的相关性,结果误差相对较小;ET_noah、ET_mos、ET_vic结果误差相对较大。该研究结果可以为汉江流域水循环研究和南水北调中线工程管理提供科学参考。  相似文献   

5.
为研究不同蒸散发模型在估算湿润地区蒸散发量方面的适用性,以淮河大坡岭以上流域为研究对象,构建了考虑植被叶面积指数的分布式彭曼蒸散发模型及双源蒸散发模型。通过计算流域2010~2018年逐日蒸散发能力,并建立上述模型计算值与蒸发皿实测值的拟合关系,比较了两个模型的计算精度。结果表明:彭曼蒸散发模型及双源蒸散发模型计算的流域蒸散发能力值与蒸发皿实测值,在时间上具有较好的相似性和一致性;且双源蒸散发模型计算的流域蒸散发能力与蒸发皿实测蒸散发值的相关关系好于彭曼蒸散发模型。研究结果可为估算湿润地区的蒸散发量提供支撑。  相似文献   

6.
鞠艳  张珂  李炳锋  陶然  张菁  吴星宇 《水资源保护》2022,38(6):104-110, 153
通过GRACE重力卫星观测数据和GLDAS陆面模式同化数据重构金沙江流域实际蒸散发,采用质量守恒约束降尺度方法提升GRACE重力卫星陆地水储量观测数据的空间分辨率;基于水量平衡方法,重建了金沙江流域2002—2016年的子流域尺度逐月实际蒸散发,分析了金沙江流域实际蒸散发的时空变化特征以及影响实际蒸散发的主要驱动因子。结果表明:重建的实际蒸散发与7种蒸散发产品的可靠性均较高,其中与NOAH产品的平均差和均方根误差最小,与PLSH产品的相关系数较好,为0.82;金沙江流域多年平均实际蒸散发量为447.30mm,空间分布上自西北向东南逐渐增加。2002—2016年蒸散发呈不显著的增加趋势;各土地利用类型蒸散发中,林地蒸散发的增加速率最大,草地的增加速率最小;金沙江流域实际蒸散发主要受降水和气温影响,受风速影响次之,受归一化植被指数和相对湿度的影响较小。  相似文献   

7.
蒸散发是水文循环和能量循环中的关键环节,蒸散发的准确估算对农业用水调度和水资源的管理至关重要。为探索基于遥感技术建立快捷估算区域蒸散发的方法,选取河套灌区永济灌域为研究区,利用Landsat遥感影像和土地利用分类结果,基于SEBAL模型,对永济灌域2019年生长季的日蒸散量进行估算,分析研究区蒸散发时空变化特征以及不同土地类型蒸散发的差异。结果表明:(1)SEBAL模型估算结果与FAO P-M公式相比,决定系数R2为0.94,均方根误差RMSE为0.43 mm/d,相对误差MRE为8.62%,模型反演精度较高,可以为研究区提供合理的蒸散发估算;(2)永济灌域生长季内日均蒸散量呈单峰变化趋势,最大值为7月的4.56 mm/d,最小值为10月的1.87 mm/d,并存在明显的空间分布差异;(3)不同土地利用类型的日蒸散量大小依次为:水体>耕地>城乡用地>草地>荒地。基于SEBAL模型估算区域的蒸散量,可为灌区水资源的节约利用提供参考。  相似文献   

8.
为探究流域长时序高空间分辨率蒸散发量计算对区域水资源开发利用、水利工程规划设计及农业可持续发 展的重要意义,以河北省邢台市柳林流域为研究对象,基于 Penman-Monteith 模型和蒸渗仪实测蒸散发数据计算 不同时期的流域作物系数(Kc),并建立 Kc与归一化植被指数(normalized?difference?vegetation?index,NDVI)的关系, 利用 250?m 分辨率 NDVI 产品将蒸渗仪测算的蒸散发量升尺度到柳林流域,计算流域各网格 2000—2021 年的蒸 散发量,分析蒸散发量的时空变化规律。结果表明:柳林流域多年平均潜在蒸散发量为 1?135.6mm,呈下降趋势; 多年平均蒸散发量为 591.4mm,呈上升趋势。蒸散发量在空间上西北高东南低,四季蒸散发量空间分布特征与多 年平均蒸散发量一致,且季节上分配不均。基于 NDVI 估算的蒸散发量与水量平衡法计算的蒸散发量 2000—2020 年多年平均相对误差为 7.9%,说明利用 Kc与 NDVI 关系可以较精确地对蒸散发量进行空间尺度提升。  相似文献   

9.
于岚岚 《东北水利水电》2015,33(1):35-37,72
文章以淮河上游息县水文站以上为研究区域,基于研究区域的数字高程数据、土地利用数据以及研究区内外附近8个气象站点2000-2010气象要素数据,运用分布式双源蒸散发模型实现了研究流域蒸散发的时空全过程模拟,为对所构建的蒸散发模型进行验证,结合研究区内息县水文站2000-2010实测蒸散发资料进行了回归分析和相关性检验,并选用F检验和T检验两种方法从日尺度和年尺度对所构建的回归方程进行了拟合度的检验,研究结果表明:所构建的分布式双源蒸散发模型计算结果与息县实测蒸散发具有较好的一致性和相似性,在日尺度和季尺度上,相关系数均可达到0.85以上,所建立的回归方程均通过了显著性水平a=0.01的F检验和T检验,研究成果可为研究区的分布式水文模型中蒸散发的计算,特别是无资料地区的蒸散发计算提供参考价值。  相似文献   

10.
为探究最新版本的陆面模式CLM5(Community Land Model, version 5)对地表蒸散发的模拟效果,选取珠江流域为研究区域,采用CLM5对该流域1989—2018年的地表过程进行模拟,并以基于卫星观测的GLEAM遥感蒸散发产品作为真值对模式的蒸散发模拟表现进行评价。评价从时间和空间的多个尺度展开,结果表明,时间上,CLM5对珠江流域的蒸散发模拟存在不同程度的低估,流域多年平均蒸散发的相对误差为-16.07%,这种低估主要来源于对冷季蒸散发低值的低估。相比之下,CLM5对于暖季蒸散发高值的模拟表现较好。空间上,CLM5在流域东南部、南部和西部区域的蒸散发模拟效果较好,北部地区模拟表现较差。研究可以为CLM5陆面模式中蒸散发模块的发展提供参考。  相似文献   

11.
为了探究近些年北京地区实际蒸散发的时空变化特征,采用基于Budyko理论的傅抱璞经验模型,对北京地区1980-2016年实际蒸散发进行了估算;并根据Mann-Kendall趋势分析、相关分析等方法,对研究区实际蒸散发的时间变化特征、空间格局以及影响因素进行了探讨;为提高傅抱璞经验模型在研究区的适用性,依据北京地区历史时期水文气象数据,结合水量平衡法对该模型参数进行了校准和验证。结果表明:优化参数后的经验模型在研究区具有较高的模拟精度,且适用性较强;北京地区多年实际蒸散发均值为447 mm;时间尺度上,呈不显著的下降趋势;空间上,表现出明显的空间异质性,其中,蓟运河山区的蒸散发最大,其次为潮白河流域东部;实际蒸散发的这种时空变化特征与区域降水量密切相关。  相似文献   

12.
空间观测尺度差异对蒸散量时间尺度扩展方法估值的影响   总被引:3,自引:0,他引:3  
刘国水  许迪  刘钰 《水利学报》2012,43(8):999-1003
为探讨空间观测尺度变化对蒸散量(ET)时间尺度扩展方法估算效果的影响,利用冬小麦生育期内基于涡度相关仪和蒸渗仪观测的ET数据,对比基于蒸发比、作物系数和冠层阻力的ET时间尺度扩展方法估算效果,分析空间尺度差异对由小时到日的ET时间尺度扩展效果的影响。结果表明,随着ET空间观测尺度缩小。利用上述3种方法进行ET时间尺度扩展的总体效果下降,其中基于作物系数法的ET时间尺度扩展空间尺度影响相对较小,而且利用午后数据进行ET时间扩展受空间尺度影响相对较小,因此,应依据空间尺度观测方法、下垫面状况和气候区条件,选择适宜的ET时间尺度扩展方法。  相似文献   

13.
采用GRACE陆地水储量变化数据和两参数月水量平衡模型(WBM-DP)分别构建了流域实际蒸散发月序列ETGRACE和ETWBM,以此为基准评价了两种遥感蒸散发数据MOD16、SSEbop和一种大气再分析蒸散发数据GLDAS-Noah在汉江流域上游的性能,解析了基准序列不同对蒸散发数据精度的影响。结果表明,GRACE数据和WBM-DP得到的2006—2014年汉江流域上游蒸散发基准序列在年尺度上较接近,但在月尺度上差异明显。WBM-DP可较好地模拟降水和潜在蒸散发作用下流域水储量的季节性变化特征,构建的蒸散发基准序列也更合理;而GRACE数据反映的流域水储量变化存在不合理现象,由此根据水量平衡方程推算的月蒸散发基准序列也具有异常现象。在月尺度上,基准序列的不同会导致蒸散发数据精度指标的非一致性变化,其精度评估结果也可能不同,在非汛期各月,以ETWBM为基准时,MOD16综合精度最优;而以ETGRACE为基准时,SSEbop最优。且相对于ETGRACE,以ETWBM  相似文献   

14.
喀斯特山区蒸散发的时空变异特征分析——以贵州省为例   总被引:1,自引:0,他引:1  
掌握喀斯特山区蒸散发的时空变异特征,为水资源的合理规划和优化配置提供科学依据。利用MODIS16遥感数据,在数据精度验证的基础上,运用GIS统计法、变异系数法和线性趋势法,探讨2000—2014年贵州省蒸散发的空间格局、年际和年内变化规律及不同土地覆被类型下的蒸散发特征。结果表明:(1)2000—2014年,贵州省实际蒸散发(ET)多年平均值为850.36 mm,呈西低东高,南高北低态势;潜在蒸散发(PET)多年平均值为1 473.58 mm,呈东北向西南递增态势。不同土地覆被类型下ET最大的是林地,而林地的PET最小。(2)PET年际变化率为3.88 mm/a,呈弱增加趋势;ET年际变化率为0.39 mm/a,基本保持稳定,表明贵州省水资源呈减少趋势,具有干旱化倾向。ET空间上呈东、西部减少、中部增加趋势,PET呈东、南和西三面减少、北部增加趋势。(3)ET和PET均呈单峰型。ET在7月最大,PET在6月最大,二者均在12月最小。二者在3—6月差距最大,为贵州省春旱和夏旱时期。不同土地覆被类型下ET和PET均呈单峰型,植被生长季节ET差距大,林地增长速度最快,植被成熟期PET差距最大。(4)ET和PET具有较强的季节性。ET季节性空间差异非常显著,在于林地的植被蒸腾作用对全年ET贡献较大。  相似文献   

15.
基于互补相关的乌江流域实际蒸散量分布式模拟   总被引:1,自引:0,他引:1  
为了提高气候变化下估算乌江流域陆面实际蒸散量的精度,利用乌江流域气象和水文数据,在蒸散互补原理基础上建立用常规气象资料估算流域实际蒸散量的模型。模拟结果显示:该模型能将乌江流域多年平均实际蒸散量的相对误差控制在5%以内;在充分考虑地形起伏等下垫面不均匀的条件下,将估算模型中各分量的分布式模拟结果与估算模型耦合,实现了乌江流域实际蒸散量的分布式模拟;该模型更加精细地表现了流域实际蒸散量的空间变化情况,发现其在空间分布上呈显著的西高东低的分布趋势;在时间变化上,1961-2010年间乌江流域实际蒸散量在总体上表现为下降趋势,降幅为5.08 mm/(10 a),但是2000年以后实际蒸散量有较为明显的上升趋势;日照时数及相对湿度的上升是造成实际蒸散量产生以上变化的主要原因。研究结果可为水资源评价、农业气候区划制定等提供参考。  相似文献   

16.
基于MOD16的东江流域地表蒸散发时空特征分析   总被引:1,自引:0,他引:1  
流域内蒸散特征及其变化原因对于保持能量平衡和水循环有关键作用。基于MOD16遥感数据集,分析东江流域地表蒸散发年际和年内的时空分布规律以及不同土地覆被类型的地表蒸散发时空特征。结果表明:①东江流域蒸散值(ET)整体呈中游>下游>上游的态势,而潜在蒸散发值(PET)呈下游>中游>上游的趋势。②10 a中,ET值波动较小,而PET值则相对波动较大,二者在2014年后均有增加趋势。③年内各月ET呈单峰型,ET值较高的月份集中在5—10月,最高月份在9月,ET值较低的月份集中在12月—次年2月,最低月份为2月;其次,流域内四季的ET均值表现为秋季>夏季>春季>冬季。④不同土地利用类型下,年尺度上,ET表现为裸地>耕地>城市用地>草地>林地;PET表现为城市用地>耕地>草地>林地>裸地;月尺度上,ET与年尺度基本一致,且冬季ET变异系数较高,夏季较低;在林地,四季ET的变异系数均较低,离散程度小。研究结果为预防东江流域的旱涝灾害提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号